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Abstract 
 

The thermoelastic stress analysis for linear thermoelastic bodies is developed as a 

mathematical support to the infra-red radiometric method (SPATE) applied to 

structures under cyclic loading conditions. 

 

 

1.0     Introduction 
The use of high-tech materials for structural applications has shown in recent years that the study of mechanical behavior of 

such materials is often inadequate. Studies on the interaction between mechanical and thermal effects in bodies have 

therefore received considerable attention. 

 Thermographic stress analysis has been adopted as a particularly convenient means of experimental stress analysis 

based on the thermoelastic effect. The thermoelastic stress analysis is based upon the use of the SPATE (Stress Pattern 

Analysis by the measurement of Thermal Emission) equipment for the radiometric monitoring of the temperature changes 

induced by cyclic loading in the elastic range [1 – 5]. 

 In [6] a theoretical analysis of the thermoelastic effect has been developed in order to provide a mathematical model 

as a support to SPATE and the results of tests carried out on concrete and mortar [1] are reported as experimental evidences 

of the theory described. 

 The aim of this paper is to generalize the results obtained in [6]: the intrinsic formulation of the linear theory of 

themroelasticity is adopted [7] and the linear relations given in [6] between the variation of temperature and the variation of 

stress are obtained after suitable assumptions.  

 In Section 2, within the linear theory of elasticity for an isotropic continuum body, we deduce from the First Law of 

Thermodynamics a differential equation which gives a relation between stress and temperature. 

 In Section 3 we integrate this equation and we remark that if the principal stress components are two and three the 

solution depends on the first and the second invariant of the stress while the second invariant vanishes in the case of one 

component of the principal stress. 

 In Section 4 we show that if we linearize the equations obtained in Section 3, we get, at least for the case of 

dimension one, the same results of [3]. 

 In Section 5 we apply the results obtained in Section 3 to the SPATE model considering sinusoidal principal 

components of stress. 

 

2.0 The Mathematical Equations 

 Let us consider a continuum body as defined in [9] and let us assume the bounded regular region of space occupied 

by the body in a fixed reference configuration be closed with respect to mass transfer and open with respect to energy 

transfer. The body can be considered a thermodynamical closed system. 

 According to [7] we recall that the local form of the First Law of Thermodynamics for the system considered is: 

.. rdivqFSe          (1) 

where e  is the internal energy per unit mass, q is the heat flux vector per unit surface area and unit time, r  is the heat supply 

per unit mass and unit time.  is the mass density, S and F are respectively the first Piola-Kirchhoff stress tensor and the 

deformation gradient.  

 If   is the entropy per unit mass and   the absolute temperature, we introduce the free energy per unit mass [7] 

.  e
        (2) 
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 If we assume that the body is elastic, the Second Law of Thermodynamics implies the following restrictions: 

      ,ˆ.,ˆ,,ˆ FFSSF 
     (3) 

       .,ˆ,ˆ.,ˆ,ˆ   FFFFS F 
     (4) 

 If we differentiate (2) and (3), with respect to time, by means of (4), from (1) we get: 

.rqdiv  
        (5) 

 Defining the finite strain tensor D by [7, 8]: 

 .
2

1
IFFD T 

       (6) 

where I is the unit tensor, the restrictions (3) and (4) are substituted by: 

      ,~,,
~

,,~ DDSFSD       (7) 

and  

       .,~,~,,~,
~

  DDDDS F 
    (8) 

as a consequence of material frame indifference [7, 8]. 

By differentiating (8) with respect to time and introducing the specific heat at constant deformation [3]: 

 ,,~   Dc           (9) 

from (5) we get: 

..
~

rdivqcDS                        (10) 

Now we assume that the gradient displacement u
 and its rate of change u  are small and that the body is subjected to 

small increment of temperature. 

Nevertheless the stress tensor S
~

 depends on the temperature through the material. 

Therefore, introducing the infinitesimal strain tensor [7, 8]: 

 .
2

1 TuuE                       (11) 

if  

.1 uF                        (12) 

from (6) we get: 

1
.

2

TD E u u                          (13) 

If we assume that the body is isotropic, then the constitutive equation is [7]: 

   .2 0 ItrEES                         (14) 

In the above equation   and


 are the Lame moduli, while   is related to the coefficient of linear thermal expansion   by 

[5]: 

   23         (15) 

From the experimental data we deduce that   and 


 are functions of the temperature  

  [9, 5]. 

Moreover from (13) and the assumption of linear approximation for the gradient displacement we can obtain: 

ED            (16) 

 Therefore by substituting (14) in (10), with the use of (16) we get the following equation: 

   EtrEErdivqc  12 0       (17) 

Let us assume that the thermodynamical process is adiabatic without internal heat sources, that is [7]: 

0 rdivq          (18) 

From experimental results and from the analysis of the order of magnitude we can deduce that  0   is negligible  
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with respect to  , while E  and trE  are relevant, therefore, with the use of (18), equation (17) can be written as: 

  ..2 EtrtrEEEc 






        (19) 

Equation (19) represents the thermoelastic coupling between strain and temperature. 

 Let us now deduce from (19) a similar expression in terms of stress. Because of the isotropy of the material we can 

assume that 023,0    [11]. Therefore the constitutive equation (14) can be inverted in  

 
  .

2322

1
0 IItrSSE 









      (20) 

 Let us now recall the well known relations between the Lame moduli 
,

 and the Position’s ratio v  and the 

Young’s modulus E. 

  

 














v

E
vv

Ev

12

211





       (21) 

 By means of (21) we get    and   in terms of E  and ,v  then with the use of (20) and the 

assumptions that both  0   and its time derivative are negligible, from (19) we deduce: 

SSStrtrS
c




.21 
















      (22) 

where  




































v
E

E
E

v

c

v
E

E
E

v

c









111

11

22

21

      (23) 

Lets us now set: 

 
 




















ii

ii

S

S

Str

trSI












1

 with i = 1, 2, 3      (24)  

where  iS  are the principal stresses with respect to an orthonormal basis  .ie  If we recall that     ,.
3

1

ii

i

SSSS  


  with 

the use of the (24), the relation (22) becomes: 














3

1

21

i

ii
c












      (25) 

 

3.0 Stress-Temperature Relations 

In order to get from (25) a relation between temperature and stress we must suppose that: 

(i) The mass density   is constant during the thermodynamical process; 

(ii) The partial derivatives with respect to temperature   of the Poisson’s v  and of the Young’s modulus E are constant 

with respect to time and temperature. 

It follows therefore that 2  given by (23) are constant. If we introduce the “thermoelastic constant” 
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c
k




          (26) 

And we denote with   the second invariant of the stress tensor: 

.3231212   I        (27) 

under the assumption that 00 ,    and 0   for ,0t  the integration of (25) with respect to time gives: 

      02

2

0

2

210

0 2

1





 kIn     (28) 

It is interesting to remark that in the two-dimensional case that is when the principal stresses are: 

0,0,0 221          (29) 

equation (28) still holds assuming 2,1  in (24) and replacing (27) by 

   ,212   I  

while in the one dimensioned case in which 

0,0 321    and  1      (30) 

the second invariant of the stress tensor vanishes and (28) is replaced by: 

    .
2

1 2

0

2

210

0





 kIn     (31) 

Let us remark that the solution of (25) shows a non linear dependence on the first invariant of the stress in all the cases (see 

(28) and (31)) while only in two and three dimensioned cases a linear dependence on the second invariant appears. 

 

4.0 The Linear Case 

 In classical theory [2, 10] from the generalized heat conduction equation, by assuming that straining occurs 

adiabatically with no conduction of heat and with no heat supply, the Kelvin formula has been deduced. 








k

0

        (32) 

with k thermoelastic constant defined in (26). 

 We shall prove that, from (28) and (31) of the previous section, after suitable linearizations, it is possible to get 

linear relations between the variation of temperature and the variation of stress which are comparable to (32). 

 Infact, let us define the average values of the principal stresses, of the stress invariants and of the temperature by the 

following linear relations: 

 

     000

00

2

1
,

2

1
,

2

1

3,2,1,0,
2

1









mmim

iiiiim itfor

    (33) 

We assume moreover that the principal stresses, the stress invariants and the temperature are related to their variations by: 









mmm

iimi i

.,

3,2,1,

    (34) 

 From (33) with the use of (34) we get: 









2.2,2

3,2,1,2

000

0 iiii

    (35) 

 By using the relations (33), (34) and (35) linearizing the logarithm, as usually done if :12 0    
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000
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







 











InIn       (36) 

we obtain from (29) and (31) the linearized equations: 

  

   















m

m

k

k

21

0

221

0

      (37) 

 Let us remark that (37)2 can be compared with the Kelvin’s formula but the coefficient of   is the thermoelastic 

constant plus a coefficient depending on m
 and on the elasticity modulus [9]. We remark also that (37) shows a 

dependence on the variation of the first and the second invariant of the stress and on the Poisson and Young moduli. 

 

5.0 Spate Model Results 

The SPATE model allows us to obtain the temperature variation related to the elastic deformation by spectroscopical 

experimental analysis. 

The fundamental hypothesis of the SPATE model are the following: 

(1) The deformation must be adiabatic , 

(2) There must not exist other heat sources. 

Now the relations obtained in Section 3 will be applied to SPATE model, analyzing a cyclic loading [11] in which the 

temperature variation  0   is small compared to the initial temperature 0 . We assume that the principal stresses are: 

  3,2,1,sin  itaiimi        (38) 

where im
 with 3,2,1i  denote the average stresses and ia , with 3,2,1i , are arbitrary constants. Let us set: 

   



3

1

3

1

;
i

i

i

mim aa      (39) 

The equation (28) , with the use of (36), (37)1, (38) and (39), becomes  

    tBtA 



2cos1sin

2

0




     (40) 

where  

   













 


3231212

2

21

3

1

121

2

1

4

1
aaaaaaaB

aakaA
i

imm 

    (41) 

Formulas (40), (41) are the generalization of the results given in [11] and include the particular cases of dimension 1 and 2. 

Infact, if 2,1i  formulae (38)-(41) are valid replacing (41)2 by 

    ;
2

1

4

1
212

2

21 aaaB   

if 1i  then 

  111 ,,sin aata mmm      (42) 

(39) and (40) still hold, with: 
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 

 















2

21

21

4

1
aB

akaA m

       (43) 

Let us remark that, in the case of dimension 1, from (43) and (23) we deduce that the elastic behavior of the material is 

described by the Young modulus, while in the cases of dimension 2 and 3 both Poisson and Young modulus are involved, as 

it turns out from (41) and (23). Moreover in case of dimension 1 it is possible to analyze the relation between the temperature 

variation and the stress variation. According to [1], let us replace in (42), (43) the constant a by the variation of stress   

and let us  assume in (43) that the thermoelastic constant k be relevant with respect to the other terms. Then from (40) we 

observe that according to the first addendum of the right member there is a loss of temperature for an increase of stress and an 

increase of temperature for a reduction of stress. The second addendum of the right member of (40) is relevant only for large 

variation of stress. In [1] a detailed discussion of tests performed on various specimens is reported and the conclusions are in 

agreement without remarks. 

 

6.0 Conclusions 

The assumption of the dependence of the Poisson and Young moduli of elasticity from the temperature   allows us to get a 

relation between the temperature variation and the stress variation. This relation presents coefficients which are not only the 

thermoelastic constant, as in the classical Kelvin’s formula, but depend on the average stress, on the first and second invariant 

of the stress and on the modulus of elasticity. This result is supported by experimental results [5]. The application of our 

results to the SPATE model gives a solution which is the superposition of two cyclic functions with a phase difference of 

2  one with respect to the other. The relation between the temperature variation and the stress variation obtained can be 

compared with the experimental results given in [1]. 
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