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Abstract 
 

Consider the fully nonlinear parabolic problem 

    ,0,00,,,,2  TTxQtxuDuuDfut  

where 
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uDu is a bounded 

open set in 
nR  and n  Z

 is a positive integer. It is well known that the 

classical theory for viscosity solutions does not cover the case where f is 

discontinuous. This is because the straight forward method of comparing sub and 

super solutions does not work iff is discontinuous with respect to x and t. In order 

therefore, to obtain existence and uniqueness results for this class of problems, there 

is a need to introduce the concept of generalized viscosity solutions where the 

components of the equations are elements of the space of generalized functions. This 

is achieved using nonstandard methods involving classical estimates. No linearization 

off is assumed. We show that our solutions are consistent with the distributional 

solutions whenever they exist. 

 

 

1.0     Introduction 
Crandall and Lions [1] developed a very successful method forproving the existence of solutions of nonlinear second order 

partialdifferential equations. Their method, which does not guaranteesmoothness of the solutions, applies to fully nonlinear 

equations (in whicheven the second order derivatives can enter in nonlinear fashion).Smoothness results were however 

obtained by Caffarelli [2] with anextension by Wang [3]. These methods produces, in particularregularity results for a broad 

range of nonlinear heat equations, includingthe Bellman equation. 
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Thus, great successes have been achieved in the literature using bothclassical and non-classical methods in obtaining 

existence, uniquenessand regularity results for a large class of parabolic systems in the 
C case. However, if the equations 

have singular elements, the classicaldistributional theory does not in general guarantee the existence ofsolutions of such 

problems. It therefore becomes necessary to considerinstead Colombeau algebras which provide a mathematical 

rigorousframework for simultaneously treating singular or distributional objects,non-linear operations and differentiation 

while at the same timedisplaying maximal consistency properties with respect to classicaloperations. In this paper, we 

introduce the concept of generalizedviscosity solutions defined on the space of generalized functionsintroduced in 

Colombeau [4] and Rosinger [5]. We obtain existence,uniqueness as well as consistence result for the fully nonlinear 

uniformlyparabolic equation 

     ,0,00,,,,2  TTxQtxuDuuDfut     (1.1) 

where 
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u  is a bounded open set in 

nR , n  Z  is a positive integer. This 

equation arises often in chemical flow problems, gas dynamics and other physical processes and is known to have no weak  
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solution in the classical distributional sense using the existing concept of Viscosity Solutions as given in Crandel and Lions 

[1]. Several methods exist in tackling the problem of existence of solutions for parabolic problems in the classical sense. One 

approach is to write the solutions down explicitly, another is to differentiate the equation to get equations for the derivatives 

as in Colombeau and Langlais [6]. However these methods do not apply to the general equation we are considering. The 

basic tools in our method are the methods of compactness and the use of classical estimates. In the sequel, we shall assume f 

to be uniformly elliptic, that is, (1.1) is uniformly parabolic. We briefly state the concept of generalized functions used. 

 

 

2.0 The Concept of Generalized Functions Used 

The need of considering nonlinear PDE’s, where either the respective coefficients or the data (initial or boundary conditions) 

are singular, necessitates the construction of an appropriate differential algebra, since classical linear distribution theory does 

not permit the treatment of such problems. J. F. Colombeau and others throughout the 1980’s provided a rigorous 

mathematical setting which permits a wide range of nonlinear operations on distributional objects by construction of a 

differential algebra, the ‘Colombeau algebra’, which canonically contains the vector space of distributions as a subspace and 

the space of smooth functions as a faithful subalgebra. This results from the idea of constructing a space of functions for 

which derivatives as well as nonlinear operations are preserved, thus providing a means of generalization of the classical 

concept of a differentiable function. As an associative and a commutative algebra, it combines a maximum of favourable 

differential algebraic properties with a maximum of consistency properties with respect to classical operations. There is 

however not ‘one’ Colombeau algebra as there is ‘one’ space of tempered distributions, but the Colombeau algebra must 

often be adapted to the problem under consideration, using appropriate asymptotic conditions, which makes it possible to get 

existence, uniqueness as well as consistence results. However if these are too weak, one cannot draw any useful 

consequences from the object constructed. We give here a simplified construction of the algebra G() which permits 

restriction to subspaces and which depends on a givensystem of coordinates. The definitions given here can be found in 

Ifidon and Oghre [7]. Other more sophisticated construction can be found in oberguggenberger et al. [8] and diffeomorphism 

invariant construction has been reported more recently in Grosser et al. [9] 

Definition 2.1.Let 0N denotethe set of natural numbers including zero and D(F) the set of 
C functions defined on R, 

vanishing outside a variable compact subset of R. 

Set 

           0;1: dxxxdxxRDRA k

p 
 

    whenever 0;1 Nppk   

and  
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If        .,1,0 1   xxsetweandRA nn

p Denoteby  the set of all functions 
RN0: such 

that   p whenever p . 

We denote by E[] the set of the functions of the form  

     .,,: 0 xuxRxAu    

Given  Eu  and  n

p RA we write  xu ,  for the value of  u at the point x . Observe that  E  as 

defined above with point wise multiplication is an algebra. Also if Tis a distribution then the convolution  T , whenever it 

is defined, is also a 
C function for  n

p RA so that one has an imbedding 

     xTxT           (2.1) 

which makes  D a subspace of  E which does not contain  C  as a subalgebra, since the convolution product of 

u ( u a continuous function on R) and    1

3

1  


 xx
n

namely 
u

is not equal to u in general, no matter the 

smallness of  . In other words, the inclusion of 
 C

 into 
 E

 and the inclusion as a subspace of C do not give the  
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same result. In order to make the two inclusions above coherent, we define a subspace  ME of moderate elements of 

 E
as follows. 

Definition2.2. A set
 ME

of 
 E

is called moderate if for every compact subset K of  and every differential operator 

  ;,
1

011 



n

i

iixx Nnn  
there exists an element 0Nq

such that for every 
 n

q RA
there exist c > 

0 and η> 0 such that  

  q

Kx

cxu 



 
 ,sup

      (2.2) 

whenever 0 < <η 

 ME
thus defined is a differential algebra for componentwise operations.  

Definition 2.3.An ideal 
 N

~
of 

 ME
is called Null if for every differential operator 

  , there exist 0N N  and 


such that for all

Nq 
and each  n

qA R  there exist c > 0and η> 0 such that 

 sup , N

x K

u x c

  



  whenever 0 <ε < η.    (2.3) 

Observe that the elements in  N  have afaster decay than any power of ε as ε→ 0. For simplicity we shall drop γ in our 

definition of N .  

Definition 2.4. Set  

 
 
 



N

E
G M

~
. 

The Colombeau algebra  G   is thus defined as the quotient of the subspaces of the moderate elements of  E   with 

respect to the negligible elements of  E  . Whether    ,u x E    ismoderate or not is determined by testing the 

asymptotic behaviour of u on scaled test functions    11
n

x x  


  as the scaling parameter  tends to zero; for 

moderateness we require slow growth  NO  
for some fixed N for negligibility we required fast decay  NO  

 for all n 

in all derivatives on compact sets. A diffeomorphism invariance theory of the algebra is achieved via diffeomorphism 

invariance of the testing process itself. The algebra  G   has the following properties: the space of distributions,  D   

is contained in  G   through the formula (2.1). furthermore, if  T C   then (2.1) defines the same element in 

 G   as the constant embedding    T x T x     
  

. This males  C   a subalgebra of  G  . The 

derivation of  G  , defined on representatives by       , ,i ix u x x u x    extends differentiation on  D   

by  G   is finer than the usual topology of  D  . As a consequence, if nT T in  D   for the topology induced 

by  G  , then nT T or the usual topology of  D  (Biagioni and Colombeau [10]. Finally, the restriction at the time 

0t t  is defined as the class of the map    1

0, , ,n nx x t     if  n

qA R   and if  0, ,nu x t
is a 

representative of u. 

 

3.0 General Existence and Uniqueness Result  
The following definitions are useful. 

Definition 3.1. We say a generalized function on Q is a real valued (positive function) if it has a real valued (positive 

representative. 
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Definition 3.2. A generalized function  u G Q is called a generalized constant if it has a representative which is constant 

for each 0  . 

Definition 3.3. An element  H G  is said to be non-negative if it has a nonnegative representative. 

Definition 3.4.An element  H G   with representative  , ,h x t is said to be of bounded type, if there exists 

0,0  c
such that  

   


,,,sup
,

ctxh
Ktx . 

Definition 3.5. An element  H G   is said to be of 
PL -type, 1 p    , with respect to the variable  ,x t , if it 

has a representative 
 txh ,, with the property that K Q  compact, 0M  and N Z  such that

  0,   QAN with 

 
    



0,,sup

1

,

MdQtxh pp

QKtx  

Definition 3.6.A smooth real valued function  , , , ,f M P u x t :  0,nQ x R x T R  is said to be uniformly elliptic 

if there exist a representative 
 txuPMF ,,,,

of fand a positive real number A such that  

    .,,,,,,,, NMAtxuPNFtxuPMF 
    (3.1) 

Definition 3.7.Fix T > 0 and let    1, : 0,nu x t Q R x T R  with representative    1, ,u x t G Q  be a 

generalized function. We call u a generalized viscosity solution to the system (1.1) if    0 1, .u x u and D Q  

with representative  , ,x t  such that the conditions (3.2), (3.2), (3.4), (3.5) hold.  
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  100, Qtx 
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whenever  

  
      1

~
,,,,inf QNtxtxu   

      (3.5) 

at a point  0 0 1,x t Q . 

We say    1,u x t G Q  is a generalized sub viscosity solution of (1.1) if (3.2) and (3.3) hold and a generalized super 

viscosity solution of (1.1) if (3.4) and (3.5) hold. 

Lemma 1. Assume (3.2), (3.3), (3.4) and (3.5) hold. Let u be a viscosity solution of (1.1) taking initial data  0u D  . 

Let 


be a continuously differentiable test function with representative  , ,x t  . if 

      1sup , , , ,u x t x t N Q     at a point  0 ,x T where  0 1 2, , Mx x x x , then we may write  

  0,,,,,
_

0

2

0 







 TxDDFTxt  
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Proof.Assume that 
      1

~
,,,,sup QNtxtxu   

at a point 
 Tx ,0 , without loss of generality it is plausible to 

assume that the maximum is strict. Let us define, for α> 0 

   
 tT

txtx





  ,,,,

 

for each α, 
      1

~
,,,,sup QNtxtxu    at a point 

  tx ,
 such that 

 
00   asTtandxx

 
Since u is a viscosity solution. 

 
    0,,,,,, 2

,    txDDFtxt  
we also have that  

 
   txtxx xa ,,,,,  

 
and  

 

   
 2

,,,,,
tT

txtxx xa





 

 
thus  

 
    0,,,,,, 2    txDDFtxt  

For r> 0 define sets in 
RxRn

 as follows 

 
     0,0, 22 rBrxrxQ rr 

 
and  

 
   0,0, 22 rBrxBQ rrrp 

. 

Theorem 1. There exists a generalized viscosity solution to (1.1) if  0u G   with compact support. 

Proof. Let    ,u x t C Q with representative  , ,u x t to be classical viscosity solution to (1.1) with initial data

 0u x . Let    0 , , , 0 : 0, 1u x x R   be a representative of  0u x , replacing

   0 0, , 0 , , 0u x by u x     withγ a C
function on , identical to 1 on a neighborhood of supp 

 Du ,0 , 

then  0 , , 0u x  is also a representative of 0u . Therefore we may assume  0 , , 0 0u x  if x is outside some 

neighborhood of supp 0u
. Now since 

   QCtxu ,, is the viscosity solution to (1.1) with initial data 

  0,, tattxu  we conclude that there is an element 
   QEtxu ,,  satisfying (1.1) thus from Lemma 1, there 

exist    2, ,x t C Q  satisfying 

    0,,,,,, 2  txDDFtxt  ,      (3.8) 

  00,, ux            (3.9)  

at a point  0 1,x t Q . To show that  , ,u x t so defined is a generalized viscosity solution to (1.1) we need to show 

that       1sup , , , ,u x t x t N Q     . Consider  

 
      ttxtxutxw    ,,,,,,

      (3.10) 

where 0  is a constant. Thus  

 
         txtxutxw ttt ,,,,,,

.       (3.11) 

Therefore  , ,w x t  satisfies an equation of the form 

        txDDFtxwDwDwDDFtxwt ,,,,,,,, 222
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since (1.1) is uniformly parabolic we have  

 

 
     txNPMFtxNqPMFwDAtxwt ,,,,,,,,, 2 

 

   
     txNqPMFtxNPMF ,,,,,,,

 
taking limits as q → 0 and expanding the second term on the right hand side in a Taylor series about q, we have  
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Therefore  

 
      22 ,1,, qBtxSMwDAtxw ht  

, 

where B does not depend on 
pA  provided p is large enough (and 0   is small enough depending on  ) . Following 

arguments in Colombeau and Langlais [6] we have that for  2,

ru C Q  and any integer k there exists a polynomial k  

such that 

 
         

2
12,1,2,, qBktxSMktxw

rr QchkQct   . 

If we chooseα appropriately, then following Wang [3] and the explicit bounds defining  ,hS x t we can write 

      2
1,2,, qBrMCktxw kQct r

 
 

 
where  is a constant depending on A, B. Since u is a viscosity solution to (1.1) we have that 

   rr QNqBQNq
~~ 2


.Also 

0
such that  

 
      rforQNrMC r

~
1

.  

Similarly if    2, ,x t C Q   satisfying 

    0,,,,,, 2  txDDFtxt   

  00,, ux    

we can show that       1, , , ,u x t x t N Q      . 

Theorem 2. The solution of (1.1) is unique. 

Proof. Let  ,u v G Q  with representatives  , ,u x t and  , ,u x t  respectively, be two generalized viscosity 

solutions to (1.1) satisfying the same initial conditions, then their difference satisfies 

           txgtxvDvvDDtxuDuuDFtxvtxu
t

,,,,,,,,,,,,,, 22

  
 

where  g N Q . 

We have the estimate 
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where c is a constant depending on g. p > n + 1 
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Now, 
 tx,,

satisfies  

 
     txhtxuDuuDFtxut ,,,,,,,, 2

  
     (3.19) 

and  , ,v x t satisfies  

and 
     txstxvDvvDFtx ,,,,,,,, 2
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where 
   QNandQNh
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Integrating (3.21) 
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Using this in (3.18) gives  
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Since u is a generalized viscosity solution of (1.1)  D Q such that 
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therefore  

  
    00,,,, ,2    astxvtxu pW   

 

Since  

            QNBApandQNxvxu
~

,,,
~

,, 00    . 

4.0 Coherence of the Solution   

Uniqueness as defined in G(Q) does not imply uniqueness in the distributional sense since the equality in G(Q) is too strong a way 

for defining equality in D’(Q). In order to make the concept of equality in G(Q) coherent with the equality in D’(Q. Thus two 

elements  QGvu , with representatives    txvtxu ,,,,    are said to be associated, if for every test function 

D(G) 

       00,,,,,    asdxdttxtxtxu
Q

.We may also have association of elements in G(Q)with their 

corresponding elements in D’(Q). See Oberguggenberge [14]. 

Coherence with the distribution solution can be achieved through Theorem 2 and Definition (3.3) and (3.5). This ensures that the 

corresponding solutions to (1.1) are indeed associated in G(Q). 

Theorem 3. Let  0 ,u x be an elements in  G   with compact support, which admits an element 
   Dxw0 with 

representative    1

0 0 ,nw w x     as an associated distribution, then the corresponding solutions of (1.1) are associated 

with each other in G(Q).  

Proof. Choose  QC 2 to be the classical solution to the parabolic problem 

   
  00,0,0,0,2   Dft ,    

1

2

,
Q

u   

Where u is the classical 
2, pW viscosity solution of (1.1), then following Wang [16] u  in C. By Theorem 1, u is moderate and 

has representative 
 txu ,,  in G(Q). By continuous dependence we have  

    
   txu ,,

 in C. 

On the other hand  
    txw n ,,

 in C. 

Therefore, by Definitions (3.3) and (3.6) we have 

   
      QNtxwtxu n ~

,,,,    . 
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