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Abstract 
 

Using a direct approach, two generalized forms of exact solutions to the modified 

Liouville equation is presented. This approach is in contrastsimpler than other 

approaches available in the literature which involves the use of sophisticated and 

rather cumbersome tools.  One of the solutions obtained is new and does not seem to 

have been reported previously in the literature. 

 

 

1.0     Introduction 
In this paper,  we study a modified Liouville equation of the form 

                                                            

Where ba,  and   are arbitrary constants and subscripts represent partial derivatives with respect to the variables. 

The importance of the modified Liouville equation as a field theoretic model has been established in a number of studies such 

as those stated in [1]. Several analytic methods have been proposed for finding the explicit travelling wave solutions to non 

linear partial differential equation.  This includes the tanh-function method and its various extensions [2], the Jacobi elliptic 

function expansion method [3], the homogenous balance method, the F-expansion method [4], the variational iteration 

method [5], the modified simple equation method [6] ,  G G -expansion method as cited in[7] to mention but a few.  In 

this paper, however, we adopt a direct approach. This approach is in contrast simpler than other approaches available in the 

literature which involves the use of sophisticated and rather cumbersome tools. Not only do we obtain the same solutions in 

[7], using this simpler method,   a new solutionis also obtained which has not been reported previously in the literature. 

 

2.0 Method of Solution 
We would like to obtain new and more general exact travelling wave solution to the modified Liouville equation (1.1).  

Suppose 

),( txue 

        (2.1a) 

Introducing a new variable 

BtAx 
        (2.1b) 

so that 
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 This being the travelling wave transformation of u  Equation (1.1) therefore becomes 

                                                          
                                                                     

where 
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Using the substitution 

)(upu          (2.4) 

Equation (2.2) becomes 
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where 

u
uf

1
)( 

and
2)( kuug 

                 (2.6) 

The solution to equation (2.5) can be written as 

         ∫                                                                                                   

where 

     ∫                                                                                                                     

andcis a constant of integration. Using the expressions for )(uf and )(ug and equation (2.8), equation (2.7) can be 

expressed as 

 kucup 222      (2.9) 

There are two classes of solutions to equation (2.9) depending on the value of c . 

Case (i)  0c  In this case 
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where 0  is a  constant of integration. Therefore  
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This gives the travelling wave solution to (1.1) to be 
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Case (ii) 0c   

In this case ( )u   satisfies 

 2

0( ) sec
2 2

c c
u h

k k
  

 
    

 
      (2.13) 

So that another travelling wave solution to (1.1) can be written as 
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  (2.14) 

This solution to the modified Liouville equation is new and does not seem to have been reported previously in the literature 

to the best of our knowledge. 
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