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Abstract 
 

The study of a mutualistic interaction with two dis-similar carrying capacities 

and the effect of this idea on the stability of its co-existence steady-state solution is 

primarily a crop science problem that requires a mathematical reasoning. In this 

paper, we propose to study the stability of a mutualistic interaction for three scenarios 

of the intrinsic growth rate parameter values for cowpea and groundnut while other 

model parameter values are fixed. The results which we have obtained have not been 

seen elsewhere, they are presented here and discussed. 
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1.0     Introduction 
The concept of stability is well known and applied within mathematical literatures [1 – 6]. However, the numerical modelling 

of stability with respect to a mutualistic interaction when the intrinsic growth rates of interacting populations are considered 

does seem to be a popular approach. This present analysis is based on the data of Ekpo and Nkanang [7].  While the idea of 

the carrying capacities between two interacting populations has a long-standing in the biological sciences, environmental 

sciences and mathematical ecology, its impact on an analysed mutualistic system and its stability is a very rare contribution. 

Since the carrying capacity specifies the maximum population size or biomass which sustains the growth of a population in 

question, it is vital to study its variation on the stability of a mutualistic interaction between legumes. Our present study is 

clearly differentiated from our most recent analysis [8]. Our previous study concerns an investigation on the impact of the 

intra-species coefficients on the stability, instability and degeneracy of a co-existence steady-state solution between two 

competing yeast species while this study has focused on the simulation analysis of the impact of the carrying capacities on 

the stability of the mutualistic interaction between two types of legumes. Therefore, this present analysis has made its own 

contribution to knowledge which has indicated its distinct ecological characterization and mathematical tractability than our 

previous study. 

2.0 Mathematical Formulation 
Following Ekaka-a [5], we consider the following system of model equations of continuous nonlinear first order ordinary 

differential equations 
  ( )

  
  ( )[    ( )    ( )]                                                                                  ( ) 

  ( )

  
  ( )[    ( )    ( )]                                                                                 ( ) 

Where C(0) > 0 and G(0) > 0 define the starting biomasses of cowpea and groundnut at the start of the growing season 

otherwise called the initial conditions when t = 0. The duration of growth is in the unit of days hereby denoted by the 

independent variable t. For the purpose of this simulation study, the best-fit model parameters such as aand d that define the 

intrinsic growth rates for cowpea and groundnut were selected using the data of Ekpo and Nkanang [7]. The next best-fit 

parameters such as b and f define the intra-species competition parameters which measure the inhibiting factors on the 

growth of cowpea and groundnut due to self-interaction whereas the parameters c and e define the inter-species competition 

parameters which also measure other inhibiting factors on the growth of cowpea and groundnut due to interspecific 

interaction between cowpea and groundnut. In this study, we have considered the following parameter values: a = 0.0225, d = 

0.0446, b = 0.006902, f = 0.0133, c = 0.0005, e = 0.01. 
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2.1 Method of Solution 
Following the recent idea of Ekaka-a andAgwu [2013], we have used a computational method to determine each type of 

stability for a system of two interacting populations undergoing a mutualistic interaction. First of all, the two carrying 

capacities for the interacting legumes were defined and coded using a Matlab programming language. Secondly, the co-

existence steady-state solution which was derived analytically by solving the two simultaneous linear equations in terms of C 

and Gwhich were obtained by equating the growth rate equations to zero was also coded. Thirdly, the four partial derivatives 

of the two interaction functions in terms of C and Gwith respect to C and G were derived and evaluated at the arbitrary co-

existence steady-state solution or point (C, G). Fourthly, a Jacobian matrix of four elements were constructed and coded from 

which two eigenvalues were calculated computationally and tested to be consistent with their counterpart analytical 

calculations. From the theory of the sign method in the study of stability of a steady-state solution, the qualitative values of 

the eigenvalues were determined which form the basis for each type of stability of a co-existence steady-state solution. If 

upon the evaluation of the Jacobian matrix and we obtain either two positive eigenvalues or eigenvalues of opposite signs 

then the co-existence steady-state solution can be classified as being unstable. On the other hand, if two negative eigenvalues 

were obtained then the co-existence steady-state solution is said to be stable. It should also be noted that if any of the co-

ordinates of the co-existence steady-state solution bears a negative sign, this observation has a counter-intuitive ecological 

meaning. In this scenario, such a steady-state solution can be classified as being degenerate. When a steady-state solution is 

degenerate, it should be considered as a quantitative indication in which one of the interacting legumes can go into the 

ecological risk of extinction escaping survival while the other legume can tend to survive. 

 

3.0 Results and Discussion 

The results which we have obtained and have not been seen elsewhere are presented and discussed here in the Tables below: 

the notation a stands for the intrinsic growth rate parameter value for cowpea, the notation css stands for the co-existence 

steady-state solution while the notations λ1 and λ2 stand for the two eigenvalues whose signs define the type of stability for 

the co-existence steady-state solution.   

Table 1: Calculating the qualitative stability of a co-existence steady-state solution (css) due to a variation of the intrinsic 

growth rate a of cowpea and the intrinsic growth rate d of groundnut: summary of results 1   

Example a d css λ1 λ2 Type of stability 

1 0.0225 0.0445 3.71:6.14 -0.024 -0.084 stable 

2 0.0022 0.0045 0.37:0.61 -0.0024 -0.0084 stable 

3 0.0034 0.0067 0.56:0.92 -0.0035 -0.0125 stable 

4 0.0045 0.0089 0.74:1.23 -0.0047 -0.0167 stable 

5 0.0056 0.0112 0.93:1.54 -0.0059 -0.0209 stable 

6 0.0067 0.0134 1.11:1.84 -0.0071 -0.0251 stable 

7 0.0079 0.0156 1.30:2.15 -0.0083 -0.0293 stable 

8 0.0090 0.0178 1.48:2.46 -0.0094 -0.0334 stable 

9 0.0101 0.0201 1.67:2.76 -0.0106 -0.0376 stable 

10 0.0113 0.0223 1.85:3.07 -0.0118 -0.0418 stable 

The first row of the above Table shows that the co-existence steady-state solution (3.71, 6.14) is stable having two negative 

eigenvalues -0.024 and -0.084 when the intrinsic growth rates of cowpea and groundnut are 0.0225 and 0.0446 in the unit of 

grams. It is unanimously consistent that every other co-existence steady-state solution ranging from (0.37, 0.61) to (1.85, 

3.07) is stable having two negative eigenvalues [Table 1, example 2 to example 10]. In the next series of examples, we will 

consider a scenario when the values of a andd are 0.0225 grams per area. 

Table 2: Calculating the qualitative stability of a co-existence steady-state solution (css) due to a variation of the intrinsic 

growth rate a of cowpea and the intrinsic growth rate d of groundnut: summary of results 2  

Example a d css λ1 λ2 Type of stability 

11 0.0225 0.0225 3.58:4.38 -0.0225 -0.0605 stable 

12 0.0022 0.0022 0.36:0.44 -0.0022 -0.0060 stable 

13 0.0034 0.0034 0.54:0.66 -0.0034 -0.0091 stable 

14 0.0045 0.0045 0.72:0.88 -0.0045 -0.0121 stable 

15 0.0056 0.0056 0.89:1.09 -0.0056 -0.0151 stable 

16 0.0067 0.0067 1.07:1.31 -0.0067 -0.018 stable 

17 0.0079 0.0079 1.25:1.53 -0.0079 -0.0212 stable 

18 0.0090 0.0090 1.43:1.75 -0.009 -0.024 stable 

19 0.0101 0.0101 1.61:1.97 -0.0101 -0.0272 stable 

20 0.0113 0.0113 1.78:2.19 -0.0112 -0.0302 stable 
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In this second scenario, Table 2 shows that the co-existence steady-state solution (3.58, 4.38) is stable having two negative 

eigenvalues -0.0225 and -0.0605 when the intrinsic growth rates of cowpea and groundnut are 0.0225 and 0.0225 in the unit 

of grams. We have also observed that every other co-existence steady-state solution ranging from (0.36, 0.44) to (1.78, 2.19) 

is stable having two negative eigenvalues in all the nine instances [Table 2, example 11 to example 20]. What if the two 

intrinsic growth rates are 0.0445 and 0.0445 with the appropriate units? So far in the present analysis we have not tackled this 

level of simulation analysis in order to determine the co-existence steady-state solution and its type of stability. Our next 

results in this context are presented in Table 3. 

 

Table 3: Calculating the qualitative stability of a co-existence steady-state solution (css) due to a variation of the intrinsic 

growth rate a of cowpea and the intrinsic growth rate d of groundnut: summary of results 3 

Example a d css λ1 λ2 Type of stability 

21 0.0445 0.0445 7.08:8.67 -0.0445 -0.1196 stable 

22 0.0045 0.0045 0.71:0.87 -0.0045 -0.012 stable 

23 0.0067 0.0067 1.06:1.30 -0.0067 -0.0179 stable 

24 0.0089 0.0089 1.42:1.73 -0.0089 -0.0239 stable 

25 0.0111 0.0111 1.77:2.16 -0.011 -0.03 stable 

26 0.0133 0.0133 2.12:2.60 -0.0133 -0.0359 stable 

27 0.0156 0.0156 2.48:3.03 -0.0156 -0.0419 stable 

28 0.0176 0.0176 2.83:3.47 -0.0178 -0.0478 stable 

29 0.0200 0.0200 3.18:3.90 -0.0200 -0.0538 stable 

30 0.0222 0.0222 4.55:5.10 -0.0222 -0.0770 stable 

In this third scenario, Table 3 shows that the co-existence steady-state solution (7.08, 8.67) is stable having two negative 

eigenvalues -0.0445 and -0.1196 when the intrinsic growth rates of cowpea and groundnut are 0.0445 and 0.0445 in the unit 

of grams. We have also observed that every other co-existence steady-state solution ranging from (0.71, 0.87) to (4.55, 5.10) 

is stable having two negative eigenvalues in all the nine instances [Table 3, example 21 to example 30].  

 

4.0 Conclusion 
A dominant deduction from this present analysis shows that when the two intrinsic growth rates are varied, these two 

parameters at a time when other model parameters are fixed, stability of each co-existence steady-state solution is guaranteed. 

This key observation supports biodiversity gain in these thirty (30) illustrating examples. We would expect these results to 

provide some insights that can aid in the food production planning of the Niger Delta agricultural region. 
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