
549

Journal of the Nigerian Association of Mathematical Physics

Volume27, (July, 2014), pp 549 – 562

© J. of NAMP

Computer Software for Solving Assembly Line Balancing Problem

Edokpia, R.O.
1
, Okonta, C.I.

2
 and Audu, H.A.P.

3

1,2

Department of Production Engineering, University of Benin, Nigeria
3
Department of Civil Engineering, University of Benin, Nigeria.

Abstract

The problem of assembly line balancing is a non-deterministic polynomial-time-

hard optimization problem. We presented in this work computer software for solving

SALBP based on genetic algorithm, using object oriented approach of Visual

Basic.net. The methodology utilises three different priority-based heuristics and

Genetic Algorithm (GA) in solving assembly line balancing problem. The GA also

adopts a fitness function based on realized cycle time and a crossover based on fitness

ranking.

Keywords: Object Oriented Programming; Assembly Line Balancing; Heuristic

Encoded Genetic Algorithm.

Keywords: Diffraction, knife edge, Line of Sight

1.0 Introduction
Assembly lines are flow-line production systems, where a series of workstations, on which interchangeable parts are added to

a product, are linked sequentially according to the technological restrictions [1]. The assembly line balancing problem is a

decision problem on how best tasks are to be assigned to the various workstations in order to increase efficiency. This

increase in efficiency can be approximated to the minimization of the number of workstations and the maximization of the

production rate. There are three reasons why assembly lines were developed. They are for a cost-efficient mass-production of

standardized products, designed to exploit a high specialization of labor and the associated learning effects [2].

The variable of interest for the ALB consists of number of tasks, processing time, precedence relationships, and the cycle

time. The goals of the ALB are to minimize the number of workstations (m), minimize the workload variance, minimize the

idle time, and maximize the line efficiency [3]. If a single product is produced on a line, then the problem is called simple

assembly line balancing problem (SALBP). SALBP can be classified into three groups according to the objectives;

– SALBP-1: the objective is to minimise the number of stations on the line for a given cycle time.

– SALBP-2: the objective is to minimise the cycle time for a given number of stations on the line.

– SALBP-E: the objective is to maximise the line efficiency for variable cycle time and number of Stations [4].

Balancing the assembly line needs some constraints, as follows:

i. Precedence constraint should be satisfied.

ii. The cycle time is greater than or equal to the time of any work element.

iii. The workstation time should not exceed the cycle time [5].

Though SALBP is a class of NP-hard optimization problems; effective exact methods are available in solving small and

medium-size problems. Approximate methods (heuristics and metaheuristics) have been developed in order to overcome the

size limitation of the exact methods aiming at providing good solutions that are as near to the optimal solution as possible.

Nevertheless, further algorithmic improvement is necessary for solving large-scale problems [6].

Genetic algorithms are adaptive heuristic search algorithm premised on the Darwin’s evolutionary ideas of natural selection

and genetic. The basic concept of genetic algorithms is designed to simulate processes in natural system necessary for

evolution. As such they represent an intelligent exploitation of a random search within a defined search space to solve a

problem [7]. GA is a global optimization algorithm derived from evolution and natural selection.

The basic thought of Genetic algorithm include

i. Randomly producing an original population whose number of individuals is a constant N.

ii. Producing next generation by crossing over and mutation among individuals.

iii. Forming the new population of N individuals from the generation of ii.

Corresponding author: Edokpia, R.O., E-mail: ralphedokpia@yahoo.com, Tel.: +2348023368811

Journal of the Nigerian Association of Mathematical Physics Volume 27 (July, 2014), 549 – 562

550

Computer Software for Solving… Edokpia, Okonta and Audu J of NAMP

iv. Producing the next population by repeating the step ii and iii until obtaining the individual which satisfies conditions

[8].

While genetic algorithms have the advantage of not getting stuck in local optima, they have other problems. When the search

space is very large then genetic algorithm methods generally take a long time to converge to good quality solutions [9].

In order to find optimal solution to the ALB problem via GA methods, four critical elements are required. First, an

appropriate representation is required. This is accomplished by representing a task sequence in terms of chromosome.

Second, a fitness function is required to evaluate the quality of different potential solutions. Third, a set of genetic operators

(parent selection, crossover and mutation) which generate new chromosomes as a function of older chromosomes must be

defined. Finally, algorithm parameters must be decided [10].

The purpose of this work is basically to develop and implement computer software that would greatly enhance an accurate

evaluation of simple assembly line balancing problem using genetic algorithm. Thus the problem addressed was:

i. To provide very accurate and efficient solutions for ALBP.

ii. To reduce the computational complexity and the arduous task usually encountered in solving line balancing

problems.

iii. To provide a visual display of the solution so as to easily and speedily interpret these solutions.

2.0 Design of Software Model
In designing the software, The Genetic Algorithm procedure followed is stated in [11].

Synopsis of the Genetic Algorithm

 [Start] Generate random population of n chromosomes (suitable solutions for the problem)

[Fitness] Evaluate the fitness f(x) of each chromosome x in the population

[New population] Create a new population by repeating following steps until the new population is complete

[Selection] Select two parent chromosomes from a population according to their fitness

[Crossover] With a crossover probability, cross over the parents to form a new offspring

[Mutation] With a mutation probability mutate new offspring

[Accepting] Place new offspring in a new population

[Replace] Use new generated population for a further run of algorithm

[Test] If the end is satisfied, stop, and return the best solution in current population

[Loop] Go to step 2

The Flow diagram of genetic algorithm is shown in Figure 1.

Figure 1: Flow diagram of genetic algorithm

Journal of the Nigerian Association of Mathematical Physics Volume 27 (July, 2014), 549 – 562

Yes

No

es

Yes

Yes

No

es

Apply replacement

operator to

incorporate new

individual into

population

Apply mutation operator

to produce mutated

offspring

Select one off-spring

Finish

Terminate?

Mutation

finished?

Evaluation: assign fitness to

each individual

Start

Generate N individuals

Evaluation: assign fitness to each individual

Select two individuals; Parent 1

Parent 2

Use crossover operator to produce

off-springs

Crossover

finished?

551

Computer Software for Solving… Edokpia, Okonta and Audu J of NAMP

The procedures were carefully programmed using visual basic.Visual Basic.Net is an object oriented programming language,

comprehending the syntax and the effects of the programming language elements is obviously an essential part of learning a

language, but appreciating how the language features work and how they are used is equally important. Rather than just using

code fragments, it provides us with practical application to solving specific problems. These applications can then provide a

basis for us to experiment and see the effects of changing the code in various ways. VB.Net is a powerful and compact

computer language that allows you to write programs that specify exactly what you want your computer to do. You’re in

charge: you create a program, which is just instructions, and your computer will follow them. There are four fundamental

stages in the creation of any VB.Net program, they are Editing, Compiling, Linking, Executing as shown in figure 2.

Figure 2: Creating and executing a program in visual basic.ne

In the design of the software, the relevant equations and models were assembled. Also visual representation of the solutions

to problems identified was developed in the form of table solutions. The software was tested on a variety of problems and the

Journal of the Nigerian Association of Mathematical Physics Volume 27 (July, 2014), 549 – 562

Success!

Yes

No

Errors ?

Executing

Run program

Cshh

Executable File

(.exe)

Editing

Create/modify
program source code

Compiling
Generate machine

instruction

Errors?

 Linking

Link in libraries, etc.

Source File

(*.vb)

Object File

(*.obj)

No

Yes

Yes

No

Errors?

552

Computer Software for Solving… Edokpia, Okonta and Audu J of NAMP

solutions obtained were accurate, thus validating the accuracy of the software. The flow chart for the software design is

shown in figure 3. The following is the algorithm on which the software is based:

Start

If Form1.load = True, Then

 If Button3. Click = True, Then

If Form2.load = True, Then

 If Button2. Click = True, Then

ovalshapes.show =True

End if

Input known parameter and assign to Ovalshape from: task, time and cycle time

 If Button3. Click = True, Then

 Ovalshape.Highlight and Inputbox.Show

Input task precedences

End if

End if

If Button4. Click = True, Then

 If Form4.load = True, Then

 If button1.click = True, Then

 If Inputbox.Show = True, Then

 Input the value of a

End if

If DataGridView1.Show, DataGridView2.Show, DataGridView3.Show, DataGridView4 = True Then

Generate a table of the initial population

Compute the fitness of the population using equations 1 and 2

Input the value of x1, x2 and mp to generate new population using equation 3

End if

End if

End if

 If CheckBox1. Click = True, Then

Compute the fitness of the next generation

If Inputbox.Show =True, Then

 Input the number of generations equations 1 and 2

End if

End if

If Button6.Click = True, Then

If Form5.load = True, Then

End if

End if

End if

End if

End

Figure 3:Flow chart of the computer program for evaluating assembly line balancing

Journal of the Nigerian Association of Mathematical Physics Volume 27 (July, 2014), 549 – 562

Start

click to enter data

Next precedence

Enter data

Task Time Position

Task precedence

Cycle
Time Continue

Generate GA

Compute GA

Enter
a

Next generation detail

Multiple Generation

Compute GA

View best 20%

Toggle table

553

Computer Software for Solving… Edokpia, Okonta and Audu J of NAMP

2.1 Description of the Usage of the Software
The programme’s structure basically consist of three stages namely the input stage, analysis, and output stage [12].The steps

followed in using the program are explained using the example below. The example problem has 12 tasks and a cycle time of

10units. The precedence network of the presented example is graphically shown in Figure. 4 while the precedence table is

shown in table 1.. A full detail of the problem is presented in [10]

Figure 4: Precedence diagram of assembly network. [10].

Table 1: The precedence table Cycle time (CT) = 10.

Task No. Task Time Immediate Predecessor task

1 5 -

2 3 1

3 4 2

4 3 1

5 6 4

6 5 3,5

7 2 6

8 6 7

9 1 6

10 4 6

11 4 10

12 7 8,9, 11

Step1. Launch the program. This will open the welcome window which has the enter button.

Step2. Click the enter data button to go the data input widow where the tasks, task time, task precedence and cycle time will

be inputted.

Step3. Click on next precedence and enter the task number and task time to labelled textbox.

Journal of the Nigerian Association of Mathematical Physics Volume 27 (July, 2014), 549 – 562

554

Computer Software for Solving… Edokpia, Okonta and Audu J of NAMP

Step4. Assign the inputted task to a position by clicking on any of the oval shape.

Step5. Repeat steps 3 and 4 for all the tasks.

Step6. Click on enter precedence. The will pop up an input box and an oval shape will be highlighted.

Step7. Enter the precedence to the task in the oval shape highlighted starting with 0, for the tasks with no precedence, 0,1, for

the tasks that have task number 1 as precedence, 0,1,2, for tasks that have task number two as precedence, etc. NOTE a

comma (,) must precede any precedence inputted.

Step8. Enter the cycle time into the labelled textbox.

Journal of the Nigerian Association of Mathematical Physics Volume 27 (July, 2014), 549 – 562

555

Computer Software for Solving… Edokpia, Okonta and Audu J of NAMP

Step9. Click on continue to go to the GA window.

Step10. Click on generate GA. This will pop up an input box where the value of “a” will be inputted. “a” is the number of

chromosome in excess of 2 n where “n” is the number of tasks.

Step11. Click on the “ok” button. This will generate a random population of chromosomes

Step12. Click on compute GA. this will give the solution to the first generation in table with the line efficiency and

smoothness index in a list box. Click on toggle table to view the solutions.

The summary of the solution in example 1 is shown in Table 2.

Journal of the Nigerian Association of Mathematical Physics Volume 27 (July, 2014), 549 – 562

556

Computer Software for Solving… Edokpia, Okonta and Audu J of NAMP

Table 2: Solution to the initial population of example 1

Chromosome No of

station

Manual Line

efficiency

Program Line

efficiency

Error Manual

Smoothness

index

Manual

Smoothness

index

error

1 6 83.33333 83.33334 0.00% 2 5.09902 0.00%

2 7 79.36508 79.36508 0.00% 6.557438 6.557438 0.00%

3 6 83.33333 83.3333 4 0.00% 4.89898 4.89898 0.00%

4 6 83.33333 83.33334 0.00% 5.09902 5.09902 0.00%

5 7 71.42857 71.42857 0.00% 8.485281 8.485281 0.00%
6 6 92.59259 92.59259 0.00% 2.44949 2.44949 0.00%

7 7 79.36508 79.36508 0.00% 6.557438 6.557438 0.00%

8 6 83.33334 83.33334 0.00% 4.89898 4.89898 0.00%

9 7 71.42857 71.42857 0.00% 8.485281 8.485281 0.00%

10 7 79.36508 79.36508 0.00% 6.557438 6.557438 0.00%

11 7 79.36508 79.36508 0.00% 5.567764 5.567764 0.00%

12 6 83.33333 83.33334 0.00% 5.09902 5.09902 0.00%

13 6 92.59259 92.59259 0.00% 2.44949 2.44949 0.00%

14 7 79.36508 79.36508 0.00% 6.557438 6.557438 0.00%

15 6 83.33333 83.33334 0.00% 5.09902 5.09902 0.00%

16 6 83.33334 83.33334 0.00% 5.09902 5.09902 0.00%

17 7 71.42857 71.42857 0.00% 8.485281 8.485281 0.00%

18 6 83.33334 83.33334 0.00% 4.89898 4.89898 0.00%

19 6 83.33334 83.33334 0.00% 5.09902 5.09902 0.00%

20 6 92.59259 92.59259 0.00% 2.44949 2.44949 0.00%

21 6 92.59259 92.59259 0.00% 2.44949 2.44949 0.00%

22 7 79.36508 79.36508 0.00%

5.91608 5.91608 0.00%

 23 6 83.33334 83.33334 0.00% 4.89898 4.89898 0.00%

24 7 71.42857 71.42857 0.00% 8.485281 8.485281 0.00%

25 6 92.59259 92.59259 0.00% 2.44949 2.44949 0.00%

Step13. Enter cross over point and mutation probability.

Step14. Click on the checkbox and then the next generation button. This will pop up an input box where the number of

generations will be inputted.

Step15. Click on view best 20%. This will give the best solutions to the problem.

Journal of the Nigerian Association of Mathematical Physics Volume 27 (July, 2014), 549 – 562

557

Computer Software for Solving… Edokpia, Okonta and Audu J of NAMP

The best 20% corresponds to the pareto optimal solutions to the assembly line balancing problem.

Journal of the Nigerian Association of Mathematical Physics Volume 27 (July, 2014), 549 – 562

558

Computer Software for Solving… Edokpia, Okonta and Audu J of NAMP

Example 2. Source: [11]. Precendence diagram is shown in figure 5 and the precedence table is shown in table 3

Figure 5:.Precedence Diagram

Table 3: The precedence table (CT) = 7 Minutes

Task Number

Task Time (minutes) Immediate Predecessor Task
1

1 -

2

4 -

3

2 1

4

3 2

5

5 1,3
6

4 1,3,5
7

2 1,2,3,4,5,6
8

5 1,2,3,4,5,6,7

Using the same staeps as in example 1, the following solution to the initial population as contained in table 1 was obtained.

Journal of the Nigerian Association of Mathematical Physics Volume 27 (July, 2014), 549 – 562

 1

5

2 4

6 1

8 7

3

1min

2mins

5mins

4mins

mins

3mins

5mins

2mins

4mins

559

Computer Software for Solving… Edokpia, Okonta and Audu J of NAMP

Table 4: Solution to the initial population of example 2

chromosome No of

station

Manual Line

efficiency

Program Line

efficiency

error Manual

Smoothness index

Manual

Smoothness index

error

1 5

86.66667 86.66666 0.00% 2 2 0.00%

2 4 92.85714 92.85714 0.00% 2 2 0.00%

3 4 92.85714 92.85714 0.00% 2 2 0.00%

4 5 86.66667 86.66666 0.00% 2 2 0.00%

5 5 74.28571 74.28571 0.00% 5 5 0.00%

6 5 86.66667 86.66666 0.00% 2 2 0.00%

7 5 86.66667 86.66666 0.00% 2 2 0.00%

8 5 74.28571 74.28571 0.00% 5 5 0.00%

9 5 86.66667 86.66666 0.00% 2 2 0.00%
10 5 86.66667 86.66666 0.00% 2 2 0.00%
11 4 92.85714 92.85714 0.00% 2 2 0.00%

12 4 92.85714 92.85714 0.00% 5.385165 5.385165 0.00%

13 5 86.66667 86.66666 0.00% 2 2 0.00%

14 5 86.66667 86.66667 0.00% 2 2 0.00%

15 5 74.28571 74.28571 0.00% 5 5 0.00%

16 4 92.85714 92.85714 0.00% 2 2 0.00%

17 4 92.85714 92.85714 0.00% 2 2 0.00%

18 4 92.85714 92.85714 0.00% 2 2 0.00%

19 5 86.66667 86.66667 0.00% 2 2 0.00%

20 5 86.66667 86.66667 0.00% 2 2 0.00%

Journal of the Nigerian Association of Mathematical Physics Volume 27 (July, 2014), 549 – 562

560

Computer Software for Solving… Edokpia, Okonta and Audu J of NAMP

3.0 System Requirement and Operating System

For the assembly line balancing software to work perfectly, the computer must fulfil the following requirements:

Computer as from Pentium, at least 266MHz

-Windows XP (32 or 64 Bit) or

- Windows Vista (32 or 64 Bit) or

- Windows 7 (32 or 64 Bit) or

- Windows 8 (32 or 64 Bit)

4.0 Discussion
This software was tested for this paper on several assembly line balancing problems. Best 20% of the possible optimal

solutions were displayed in table form with their corresponding line efficiency and smoothness index in the associated

listbox. The software performance accuracy was tested rigorously through large number of different problems. The

computational speeds for the various problems depend on the number of tasks and the number of successive generations.

With the concept of the realized cycle time and parent selection based on fitness ranking, the GA undergoes less iteration to

obtain optimum solutions for Assembly Line Balancing Problems.

Journal of the Nigerian Association of Mathematical Physics Volume 27 (July, 2014), 549 – 562

561

Computer Software for Solving… Edokpia, Okonta and Audu J of NAMP

5.0 Conclusion
Genetic Algorithm provides a comprehensive search methodology for optimization. When the search space is very large then

genetic algorithm methods generally take a long time to converge to good quality solutions. In order to obtain optimum

solutions within a reasonable time of its implementation, we have designed computer software for the evaluation of assembly

line balancing problem using GA. The software performs accurately and efficiently.

References

[1] Pekin N (2006); M.Sc. thesis, Middle East Technical University: Multi Criteria Assembly Line

Balancing Problem With Equipment Decisions

[2] Shtub, A. and E.M. Dar-El,(1989). A methodology for the Selection of Assembly Systems.

International. Journal of. Production. Research., 27: 175-186. DOI:

10.1080/00207548908942537

[3] Suwannarongsri S., Limnararat S. and Puangdownreong, D (2007) Hybrid Tabu Search

Methodfor Assembly Line Balancing, Proceedings of the 7th WSEAS International Conference

on Simulation, Modelling and Optimization, Beijing, China. pp. 443-448.

[4] Rashid, M.F.F, Hutabarat, W and Ashutosh, T (2011). A Review on Assembly Sequence

Planning and Assembly Line Balancing Optimisation using SoftComputing Approaches.

International Journal of Advanced Manufacturing Technology, Volume 59, Issue 1-4,

pp335-349

[5] Ariffin, M.K.A.M, Fathi, M and Ismail, N (2012). A New Heuristic Method to Solve Straight

Assembly Line Balancing Problem. Pertanika Journal of Science and Technology. 20 (2) 355 –

369.

[6] Kriengkorakot N and Pianthong N (2007) The Assembly Line Balancing Problem: Review

articles. KKU Engineering Journal, 34(2) 133 - 140

[7] Bajpai, P and Kumar, M (2008). Genetic Algorithm – an Approach to Solve Global

Optimization Problems. Indian Journal of Computer Science and Engineering Vol 1 No 3

199-206)

[8] Guo, C and Yang, X (2011). A Programming of Genetic Algorithm in Matlab7.0 Modern

Applied Science Vol. 5, No. 1;pp. 230-235

[9] Muhammad Z. M and Muhammad I. J (2010). Soft Computing in Optimizing Assembly Lines

 Balancing. Journal of Computer Science 6 (2): 141-162

[10] Edokpia R. O and Okonta C. I. (2013). On The use of heuristics and genetic algorithm for

solving linebalancing problems. a comparative analysis. Journal of the Nigerian Association of

Mathematical PhysicsVolume 25,pp267-280

[11] Edokpia R. O and Okonta C. I. (2013) Solving Assembly Line Balancing Problems:A case study

of a manufacturing company. Journal of the Nigerian Association of Mathematical Physics

Volume 25,pp. 251-266.

Journal of the Nigerian Association of Mathematical Physics Volume 27 (July, 2014), 549 – 562

562

Computer Software for Solving… Edokpia, Okonta and Audu J of NAMP

[12] Akpobi, J.A. and Lawani A.I. (2006). Computer-Aided-Design of flywheels. Advances in

Engineering Software 37. 222–235

 [13] Ponnambalam S. G, Aravindan P, Mogileeswar Naidu G (2000) Multi-objective genetic

 algorithm for solving assembly line balancing International Journal Advance

Manufacturing 16(5), pp. 341–352

Journal of the Nigerian Association of Mathematical Physics Volume 27 (July, 2014), 549 – 562

