
509

Journal of the Nigerian Association of Mathematical Physics

Volume27, (July, 2014), pp 509 – 514

© J. of NAMP

Formal Representation for Ascertaining Language Domain Reliability

Akwukwuma V.V.N and Obi J.C.

Department of Computer Science, University of Benin, P.M.B. 1154. Benin City. Nigeria.

Abstract

Formal specification uses mathematical notation to specify clearly and

unambiguously the properties a safety software system should possess. They focus on

“What” and not “How”. This research paper attempts to define the properties a

reliable system ought to possess utilizing Zed notation in specifying these properties

wherein interaction within the system was visualized using Unified Modeling

Language (UML) sequence diagrams. The findings are: system failures are

eliminated as reliability will be upheld to a large extent while time usage invested in

ratifying unknown errors will be saved. This research paper has provided a sample

representation of formal specification.

 Keywords:Formal Specification,MATLAB Schema, UML, Z-Notation.

1.0 Introduction
Language Reliability (LR) is a subset Program reliability is an important factor affecting system reliability. It differs from

hardware reliability in that it reflects the design perfection, rather than manufacturing perfection [1]. Reliability is an essential

program attribute. Reliability is closely linked with the quality of measurement which is determined by the "consistency" or

"repeatability" of program measure [2].

The stability or consistency of scores over time or across raters determines reliability. Reliability pertains to scores not

people. Thus, it is highly inadequate to associate reliability with persons. The root causes of program (application)

unreliability are found in non- compliance with coding best practices (CBP). This non-compliance can be detected by

measuring the static quality attributes of application program reliability criteria. Assessing the static attributes underlying an

application‟s (program) reliability provides an estimate of the level of program risk and the likelihood of potential application

failures and defeats the application will experience when placed in operation [2].

System reliability is tied to preciseness in the specifications of system properties eliminating ambiguities and vagueness.

Formal specification is an important ingredient in safety critical systems in which failure cannot be tolerated due to the cost

associated with it flaws. This research paper attempts to define the properties a reliable system ought to possess utilizing Zed

notation in specifying these properties formally, backtracking toward our previous published paper [3].

2.0 Material and Methodology

2.1 Materials
In achieving our objective of determining the objective a reliable system should possess, Z-notation and Unified Modeling

Language (UML) serves as the main tools for the methodology of our work.

Z-notation uses mathematical notation to describe in a precise way the properties a software system must possess, without

unduly constraining the way in which these properties are achieved [4, 5 and 6]. Formal specification (Mathematical notation

or Z) uses mathematical data types to model data in a system and achieve it underlining objectives. These data types are not

oriented towards computer representation, but they obey a rich collection of mathematical laws which make it possible to

reason effectively about the way a specified system will behave. We use the notation of predicate logic to describe abstractly

the effect of each operation of our system, again in a way that enables us to reason about their behavior.

The other main ingredient in Z is a way of decomposing a specification into small pieces called Schemas. By splitting the

specification into schemas, we can present it piece by piece. Each piece can be linked with a commentary which explains

informally the significance of the formal mathematics. In Z, schemas are used to describe both static and dynamic aspects of

a system [4]. The static aspects includes

Corresponding author: Akwukwuma, E-mail:vakwukwuma@yahoo.com, Tel.: +2348033440003 & 08093088218(O.J.C)

a.

Journal of the Nigerian Association of Mathematical Physics Volume 27 (July, 2014), 509 – 514

mailto:vakwukwuma@yahoo.com

510

Fuzzy Classifier Approach in… Akwukwuma and Obi J of NAMP

a. the state it can occupy;

b. the invariant (quantity that is unchanged by a set of mathematical operation) relationship that are maintained as the

system moves from states to states.

The dynamic aspect Includes:

a. the operation aspect that are possible;

b. the relationship between their input and outputs;

c. the changes of state that happen.

The schema presented in this research paper provided an avenue wherein our formal specification could be presented in

fragment enabling us to associate commentary; explain informal the significance of the formal mathematical notation

representation.

Unified Modeling Language (UML) is a standard modeling language used for modeling software systems. The focus of UML

is on creating simple, well documented and easy to understand software models. The goals of UML are as follows [7]:

a. Provide a simple and easy-to-use expressive visual modeling tool which would be process and language independent

b. Visualize the software with well-defined symbols to represent various elements of a system for developer‟s

unambiguous interpretation of a model written by another developer

c. Construct models of the software system that can easily be implemented with a variety of programming language.

d. Document model of the software system by expressing the requirements of the system during its development and

deployment stages.

UML enables system engineers to create a standard blueprint of any system. It provides a number of graphical tools that can

be used to visualize a system from different viewpoints. The multiple views (user, structural, behavior, implementation and

environment) of the system that is represented by using diagrams together depict the model of the system [8].

2.2 Methodology

This research paper follows through on the methodology proposed, implemented and simulated by [3]; wherein the holistic

criteria for determining language domain reliability where framed into a model capable of determining varied language

reliability. Genetic algorithm and fuzzy logic were utilized as the methodological tools, the implementation of the system

were handled with Matrix Laboratory (MatLab). The system specification properties of the system are proposed with this

adjourning research paper owning to the criticality of the system.

The following are some of the basic types in Z{CHAR, STRING, CURRENCY, QUERY, OBJECT, COMPONENTS,

BOOLEAN:: = TRUE/FALSE, DATA and OBJECT}

Every system user is authenticated using his username/ID and password on the system

 System User

 System User_name/ID: seq CHAR

 System User_password: seq CHAR

 System User: ℙ System User

 Access! : Boolean User

 System ∈system.access! = accepted) ۷ (system ∉system.access ≠ accepted)

Figure 1: SystemUser Schema

There is no frontier to the number of registered system user and each system user can have only one authentication and

authorization privilege. Logging on, each system user must register its name as specified in Figure 1.

 System list

 System: ℙ SYSTEM: ℙ RELIABILITY PROCESSES

 System List: SYSTEM → RELIABILITY PROCESESES

 Systems = dom list

Figure 2: LIST Schema

Figure 2 highlight the Systemlist which provide the reliability processes provide by the system.

 Register Reliability Processes

 ∆ System List

 System? : SYSTEM

 Reliability -Processes? : RELIABILITY PROCESSES

 report! : REPORT

 (system? ∉ system ٨

 System List′ = SystemList U {system? → processes?}٨ report! = ok) ۷

 (system? ∉system٨systemlist′ = systemlist٨ Report! = already_known)

Figure 3: Register-Reliability Schema

Journal of the Nigerian Association of Mathematical Physics Volume 27 (July, 2014), 509 – 514

511

Fuzzy Classifier Approach in… Akwukwuma and Obi J of NAMP

The list braces the facility in registering reliability processes given that the system process does not exist previously. If the

process exists previously, a report of „already known‟ is returned or vice versa as the case may be as clearly showed in Figure

3.

 LocateProcess

Ξ SystemList

Processes? : RELIABILITY PROCESSESS

Systemlist?ℙ RELIABILITY PROCESSES

(systemlist! = {system: systems / list (system) = process? } ۷ (system ∉ systems ٨ report! = not_known)

Figure 4: Locate process Schema

The Locate Process function obtains a process type as an argument and returns a result responds in line with the schema

processes as shown by Figure 4.

 AlreadyExistingProcess

 Ξ SystemList

 system? : SYSTEM

 result! : REPORT

 process? ∈ Processes

 result! = already_known

Figure 5: AlreadyExistingprocessSchema

Figure 5, highlights, AlreadyExistingProcessSchema which determines a change to the systemlist in terms of new input

process.

 ProcessNotAvailable

 Ξ Processlist

 process: ℙ RELIABILITY PROCESS

 report! : REPORT

 request? : RELIABILITY PROCESS

 ∀process ∈system.list (process) ≠ Reliability

 report! = not_known

Figure 6: ResponsibilityNotAvailable Schema

The Figure 6, shows the error which occurs when a system user requests for a process which has not been registered in the

systemlist. An error report of „not known‟ is returned. The list is initialized at the beginning with no process or reliability

process in Figure 7.

 Initialize_List

 SystemList

 PROCESS: ℙ RELIABILITY PROCESSES

 systemlist = ∅

 reliability process = ∅

Figure 7: Initialize_List Schema

2.3 System Design and Unified Modeling Language (UML)

Software design immediately follows the requirements engineering phase in a software process. Software design is the

translation of the requirement specification into useful patterns for implementation. UML sequence diagram shows the

interaction between classes (or object) in the system for each use case. The interaction represents the order of messages that

are exchanged between classes to accomplish a purpose. Figure 8 and Figure 9 specify these interactions.

Journal of the Nigerian Association of Mathematical Physics Volume 27 (July, 2014), 509 – 514

512

Fuzzy Classifier Approach in… Akwukwuma and Obi J of NAMP

Figure 8: Registration User Sequence Diagram

Figure 8, models the sequence of steps involved in the registration of a system user. The order of appearance of the arrows

indicates the order of the actions while the arrow direction indicates the direction of flow of events / results.

Figure 9: Login User Sequence Diagram

Journal of the Nigerian Association of Mathematical Physics Volume 27 (July, 2014), 509 – 514

 System-User System Interface Registration Database

Registration Page

 Save Registered Detail

 Save Registered Detail /Successful

 Return Result

 Send Registered Status

Display Result

 System user System Interface Database

 Login Page

 Process Login details

 Login Result

Output

513

Fuzzy Classifier Approach in… Akwukwuma and Obi J of NAMP

Figure 9, models the sequence of steps involved in the log in System user case scenario. The order of appearance

of the arrows indicates the order of the actions while the arrow direction indicates the direction of flow of

events/results.

3.0 Findings
Based on the ease at which the users get information through this new system, the following are revealed:

a. Prevent system failure as reliability will be upheld to a large extent.

b. Save time otherwise investigated in ratifying unknown errors.

4.0 Conclusion

Formal specification is the bedrock of safety critical systems, which uncovers ambiguities and unwanted errors

from system requirement. In Nigeria and African as a whole this approach has not be implemented for most safety

critical system opening the avenue for system failure with huge implication. This research paper focuses on

providing a sample representation of formal specification. The various segment of the system was specified

utilizing UML. The results of the finding were listed assiduously. Formal specification is an avenue for safety

critical system which must be explored in as much safety is involved.

5.0 References

[1] Jiantao P. (1999), “Software Reliability”, retrieved online from

http://ece.cmu.edu/koopman/Des_a 99/sw-reliability/

[2] CISA: Certified Information System Auditor (2011), “CISA Review Manual 2010”, Chapter 5,

Pp. 305.

[3] Obi and Akwukwuma (2013), “Assessment of Programming Language Reliability Utilizing Soft-

Computing”, International Journal on Computational Sciences & Applications (IJCSA) Vol.3,

No.3 pp. 25 -35.

[4] Spivey J. M. (1998), “The Z Notation: A Reference Manual”, Oxford, United Kingdom.

[5] Sannella D., (1988), “A Survey of formal software development methods”, appeared in Software

Engineering: A European Perspective, A. McGettrick and R. Thayer (eds.), IEEE Computer

Society Press, pp 281-297, 1993.

[6] Spivey J. M. (1992), “The Z Notation: A Reference Manual, 2
nd

 Edition”, Prentice Hall

International (UK) limited, United Kingdom.

Journal of the Nigerian Association of Mathematical Physics Volume 27 (July, 2014), 509 – 514

http://ece.cmu.edu/koopman/Des_a%2099/sw-reliability/

514

Fuzzy Classifier Approach in… Akwukwuma and Obi J of NAMP

[7] Chris M. (2000), “Enterprise Modeling With UML: Designing Successful Software through

Business Analyses, Addison Wesley.

[8] Philippe K. (2000), “Rationale Unified Process: An Introduction: Second Edition, Addison

Wesley

Journal of the Nigerian Association of Mathematical Physics Volume 27 (July, 2014), 509 – 514

