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Abstract 
 

This paper discussed the questions that people usually asked about the night sky. 

Why doesn’t the moon fall to the earth? Why do the planets move across the sky? 

Why doesn’t the earth fly off into space rather than remaining in orbit around the 

sun? The study of the effects of central-force problem on planetary motion, led us to 

understand that a satellite or planet would tend to go off in a straight line if no central 

force were applied to it. A central force makes the satellite or planet deviate from a 

straight line and orbit earth or sun. This attractive force (Central-Force) is the 

gravitational force between earth and satellite, planet and sun. Indeed, central force is 

the most important force on the scale of planets, stars, and galaxies. It is responsible 

for holding our earth to together and for keeping the planets in orbit about the sun, 

since many naturally occurring forces are central. Examples include gravity and 

electromagnetism as described by Newton’s Law of universal gravitation and 

coulomb’s law respectively. 
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1.0     Introduction 
In classical mechanics, the central-force motion problem is believed to determine the motion of a particle under the influence 

of a single central-force. The word “planet” comes from a Greek word meaning “wanderer” and indeed the planets 

continuously change their positions in the sky relative to the background of stars. One of the great intellectual 

accomplishments of the 16
th

 and 17
th
 centuries was the threefold realization that the earth is also a planet, that all planets orbit 

the sun, and that the apparent motions of the planets as seen from the earth can be used to precisely determine their orbits. 

The first and second of these ideas were published by Nicolaus Copernicus in Poland in 1543. The nature of planetary orbits 

was deduced between 1601 and 1619 by the German astronomer and mathematician Johannes Kepler using a voluminous set 

of precise data on apparent planetary motions compiled by, his mentor, the Danish astronomer Tycho Brahe. By trial and 

error, Kepler discovered three empirical laws that accurately described the motions of the planets. 

Kepler did not know why the planets moved in this way. Three generation later, when Newton turned his attention to the 

motion of the planets, he discovered that each of Kepler‟s laws can be derived and in fact, they are consequences of Newton‟s 

laws of motion and Newton‟s law of gravitation [1]. 

 

2.0 Equations of Motion of the Two-Body Problem 

In the following discussion we shall assumed that as a planet or comet orbits the sun, the sun remains absolutely stationary. 

Of course, this can‟t be correct, because just as the sun of mass    located at position vector   exerts a gravitational force on 

the planet, the planet of mass    located at position vector   alsoexerts a gravitational force on the sun of the same 

magnitude but opposite direction,          , that is Newton‟s third law. Suppose that there are no other forces in the 

problem. The equations of motion of two-body problem are thus [2] 
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Where       

Now, the center of mass of our system is located at 

 

    
         
     

                                                             

 

Hence, we can write 

 

       
  

     

                                                           

 

       
  

     

                                                            

 

Where           Substituting the above two equations (4) and (5) into equation (1) and (2), and making the use of the fact 

that the center of mass of an isolated system does not accelerate, we find that both equations (1) and (2) yield 

 

  
   

   
                                                                                                                                                 

Where  

    
    

     

                                                                                                                                        

 

is called the reduced mass. Hence, we have effectively converted our original two-body problem into an equivalent one-body 

problem. In the equivalent problem, the force f is the same as that acting on both objects in the original problem (modulo a 

minus sign). However, the mass,    is different, and is less than either of    or    (which is why   is called the “reduced” 

mass). We conclude that the dynamics of an isolated system consisting of two interacting point objects can always be reduced 

to that of an equivalent system consisting of a single point object moving in a fixed potential. 

 

3.0 Conservation Theorems-First Integral of the Motion 

The system which we wish to discuss may be considered to consist of a particle of mass µ which moves in a central-force 

field described by the potential function U(r). Since the potential energy does not depend on the orientation, the system 

possesses spherical symmetry. 

Thus Kepler‟s second law-that sector velocity is constant-means that angular momentum is constant. It is easy to see why the 

angular momentum of the planet must be constant. According to
  ⃗ 

  
         , the rate of change of ⃗  equals the torque of 

the gravitational force   acting on the planet: 

In our situation,    is the vector from the sun to the planet, and the force    is directed from the planet to the sun. So this vector 

always lie along the same line, and its vector product     is zero. 

Hence,  ⃗     ⁄ , a conclusion that does not depend on the    ⁄  behavior of the force; angular momentum is conserved for 

any force that acts always along the line joining the particles to a fixed point. Such a force is called a central force. 

The Lagrangian for such a system may be written as 

 

   
 

 
    ̇  

  
 

 
    ̇  

                               

 

Where           are the masses of two objects while  ̇  and  ̇  are the derivatives of position vectors with respect to time. 

 

If we Substitute equations (4) and (5) into the equation (8) we get, 

 

  
 

 
   ̇                                                               

 

The Lagrangian, equation (9), and the total Energy E, may be expressed in plane polar coordinates as, 

 

 

 

Journal of the Nigerian Association of Mathematical Physics Volume 27 (July, 2014), 369 – 376 



371 

 

Review of the Effect of…         Yakubu, Ibrahim and Ibrahim              J of NAMP 

 

  
 

 
 (      ̇ )                                                                                    

  
 

 
 ( ̇     ̇ )           (10) 

We may substitute  ̇  
 

   
into equation (10) and obtain the expression for   as, 

 

 ̇   √
 

 
         

  

    
                                                                                

Integrating equation (11) we have, 

     ∫
(

 

  
)   

√  (       
  

    
)

                                                                       

                                  ̇  
  

  
 
  

  
 

 

   
              (

 

   
)
  

 ̇
 

4.0 Orbits in a Central Field 

In physics, an orbit is the gravitationally curved path of one object around a point or another body, for example, the 

gravitational orbit of a planet around a star. The radial velocity of a particle moving in a central field is given by equation 

(11). This equation indicates that   will vanish at the roots of the radical, i.e. at points for which equation (11) becomes, 

 

       
  

    
                                                                                                

 

We May compute from equation (12) the change in the angle θ which results from one complete transit of r from      to     

and back to    . Since the motion is symmetrical in time, this angular change is twice that which would result from the 

passage from     to    , thus [3] 

 

    ∫
     ⁄

√  (       
  

    
)

    

    

                                                               

 

5.0 Centrifugal Energy and the Effective Potential 
In many situations relativistic effects can neglected, and Newton‟s law give a highly accurate description of the motion. Then 

the gravitational force between each pair of bodies is proportional to the product of their masses and decreases inversely with 

the square of the distance between them. To this Newtonian approximation, for a system of two point masses or spherical 

bodies, only influenced by their mutual gravitation (the two-body problem), the orbit can be exactly calculated. In the 

expression above for      etc, a common term is the radical [3], 

√       
  

    
                                                                                    

 

The last term in the radical has the dimensions of energy, and  since  ̇  
 

   
  can also be written as 

  

    
 

 

 
    ̇                                                                                                        

 

If we interpret this quantity as a “potential energy” and denote it by     then it is given by, 

   
  

    
                                                                                                               

 

Then the “force” that must be associated with    is 

 

    
   

  
 

  

   
    ̇  
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Thus, we see that the term 
  

    
of equation (13) can be interpreted as the centrifugal potential energy of the particle, and as 

such, can be included with      in an effective potential defined by 

          
  

    
 

 

Therefore, the effective potential function for gravitational attraction is  

 

      
 

 
 

  

    
                                                                                                

 

6.0 Planetary Motion and Kepler’s Problem 

In astronomy, Kepler‟s three laws of planetary motion are: 

i. “The orbit of every planet is an ellipse with the sun at a focus”. 

ii. “A line joining a planet and the sun sweeps out equal areas during equal intervals of time”. 

iii. “The square of the orbital period of a planet is directly proportional to the cube of the semi-major axis of its orbit”. 

These three mathematical laws were discovered by German Mathematician and astronomer Johannes Kepler (1517-1630), 

and used by him to describe the motion of planets in the solar system. They describe the motion of any two bodies orbiting 

each other. Planetary system; planets, dwarf planets, asteroids (minor planets), comets, and space debris orbit the central star 

in  elliptical orbits. 

A comet in a parabolic or hyperbolic orbit about a central star is not gravitationally bound to the star and therefore is not 

considered part of the star‟s planetary system. To date, no comet has been observed in our solar system with a distinctly 

hyperbolic orbit. Bodies which are gravitationally bound to one of the planets in a planetary system, either natural or artificial 

satellites, follow orbits about that planet.  

The equation for the path of a particle moving under the influence of a central force whose magnitude is inversely 

proportional to the square of the distance between the particle and the force can be obtained from equation (12), 

 

     ∫
(

 

  
)   

√  (  
 

 
 

  

    
)

                                                                                             

 

The integral can be easily evaluated if the variable is changed to   
 

 
. If the origin of θ is defined so that integration 

constant is zero, we find 

 

     

  

  

 

 
  

√  
    

   

                                                                                                        

Let us now define the following constants: 

  
  

  
 

 

  √  
    

   
 

This can be written as 
 

 
                                                                                                                  

 

This is the equation for a conic section with one focus at the origin, the quantity   is called eccentricity and 2α is termed the 

latus rectum of the orbit. 

The minimum value for   occurs when cosθ is a maximum, i.e., for θ = 0. Thus, the choice of zero for the constant in 

equation (20) corresponds to measuring θ from    , which position is called the peri-center;      corresponds to the apo-

center. The general term for turning points is apsides. 

For the case of planetary motion, the orbits are ellipses with major and minor axes (a and b; respectively) given by 
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The major axis depends only on the energy of the particle, whereas the minor axis is a function of both first integral of the 

motion,  and  . The geometry of elliptic orbits in terms of the parameters  , ɛ, a, b is shown in Figure where          are 

the foci. From this diagram, we see that the apsidal distances (      and      as measured from foci to the orbit) are given by: 

 

            
 

   
                                                                                     

 

            
 

   
                                                                                    

 

 

 
Fig. 1: Geometry of ellipse 

In order to find the period for elliptic motion, rewrite equation (15a) for the areal velocity as 

 

   
  

 
   

 

Since the entire area A of the ellipse is swept out in one complete period   

 

∫    
  

 
∫   

 

 

 

 

 

 

  
  

 
                                                                                                                     

 

Now the area of an ellipse is given by A =  ab, and using a and b from equations (21) and (22), we find 

 

  
  

 
    

  

 
 

 

    

 

√     
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 ⁄  

 

We also note that the minor axis may be written as 
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  √   

Therefore, since   
  

  
  the period   may also be expressed as  

 

   
    

 
                                                                                                             

 

This result, that the square of the period is proportional to the cube of the major axis of the elliptic orbit, is known as Kepler‟s 

third law [4]. 

 

7.0 Kepler’s Equation 
In classical mechanics, Kepler‟s problem is a special case of the two-body problem, in which the two bodies interact by a 

central force F that varies in strength as the inverse square of the distance r between them. The force may be either attractive 

or repulsive. The “problem” to be solved is to find the position or speed of the two bodies over time given their masses and 

initial positions and velocities. Using classical mechanics, the solution can be expressed as a Kepler orbit using six orbital 

elements. Figure 4 shows Kepler‟s construction. The motion takes place in the elliptical orbit with the force centre located at 

the focus 0 which is also the origin for a rectangular coordinate system. In this system the equation of the orbit is 

 

 

       

  
 
  

  
                                                                                                   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2: Kepler‟s construction 

Next, we circumscribe the ellipse with a circle of radius, a, and project the point, p, onto the circle at point, pc. The angle 

between the x-axis and line connecting the centre of the circle with the point, pc, is called the eccentric anomaly,    and is 

defined by 

     
    

 
                                                                                                        

     
 

 
                                                                                                                   

From these relationsof equations (28a) and (28b) we may write  

                                                                                                                
                                                                                                                       
The „eccentric anomaly‟   is useful to compute the position of a point moving in a keplerian orbit. As for instance, if the 

body passes the periaston is at coordinates            ,     at time   . 

Adding equations (28c) and (28d), we find 

                                                                                                                
Squaring equation (28e), we find  

                                                                                                           
So that in terms of the eccentric anomaly, the radius is  

                                                                                                             
To obtain an explicit relationship between              first, we rewrite equation (20), with the help of (21), as 
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If we add    to both sides of equation (29a), we have 

                {        }                                                        
Substituting for r from equation (29) in the right-hand side of this expression, we find 

                {                 }                               
Or, 

                                                                                     
If we subtract    from both sides of equation (29a) and substitute for r from (29) and then simplify, we obtain  

                                                                                      
Upon dividing equation (29e) by Eqn. (29d) we get; 
      

      
 

   

   
 
      

      
                                                                           

We may use the half – angle formula for the tangent to write equation (29f) as 

   
 

 
 √

   

   
    

 

 
                                                                                         

This gives   uniquely in terms of  . Therefore      may be easily obtained once      is found. In order to calculate      
we may transform equation (29f) into an equation (29g) for   by computing the integrand in terms of  . 

Differentiating equation (29g) yields  

   √
   

   
 
    ( 

 
)

    ( 
 
)
                                                                                                  

We may write  

         
      

      
                                                                                                       

               
    ( 

 
)

    ( 
 
)
                                                                                                 

Where we have used the half-angle formula for the cosine functions. In order 

to express      in terms of , we take one factor of   from equation (29e), to get  

     {          }  {       
    ( 

 
)

    ( 
 
)
}  {√

   

   
 
     

 

     
 

   }               

       √                                                                                                       
This result of equation (30a) may be written as  

   

 
   

  √    

 
 ∫            

 

 

                                                                            

Integrating equation (30b), and again using    √    , we have the result as 
   

 
                                                                                                                              

The quantity 
   

 
 is called the mean anomaly since it measures the angular deviation of a body moving in a circular orbit with 

period . Following astronomical practice, we denote the mean anomaly by . Thus,  

                                                                                                                                   
This is Kepler‟s equation. 

Kepler‟s equation may be used to obtain a simple expression for the velocity of a body in its orbit in terms of the magnitude  

of the radius vector. We may write 

                                                                                                                                       
For x and y, the square of the velocity becomes 

                                                                                                             
                                                                                                                              
 If we differentiate Kepler‟s equation with respect to the time, we have 
  

 
                                                                                                                            

Solving this equation (35) for   and substituting, we obtain  
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Substituting
 

 
        , into equation (36b) we obtain the result as 

   (
  

 
)   (

 

 
 
 

 
)                                                           

Finally, Kepler‟s third law may be used to reduce this expression to [5] 

   
 

 
(
 

 
 
 

 
)                                                                         

 

8.0 Conclusion 
In classical mechanics, central force problem is a special case of the two-body problem, in which the two bodies interact by a 

central force F that varies in strength as the inverse square of the distance r between them. The force may be either attractive 

or repulsive. An understanding of central force motion is necessary for the design of satellites and space vehiclesand the 

study of the effects of central-force on planetary motion, made us to understand that satellite or planet would tend to go off in 

a straight line if no central force were applied to it.Therefore, it is responsible for holding our earth to together and for 

keeping the planets in orbit about the sun. 
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