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Abstract 
 

The analytical equivalent crystal theory of Zypman and Ferrante which is a 

modification of the ECT have been used to establish a data base of surface energy for 

the (0001) surface of 10 hcp metals such as Be, Mg, Sc, Ti, Y, Zr, Tc, Ru, Hf and Re. 

The effect of relaxation on the computed surface energy values have been found to be 

of the order of 4 – 10% from Be to Re. The surface energies obtained are in good 

agreement with experiment and other theoretical values. 
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1.0     Introduction 

It is now well established that metal surfaces undergo relaxation [1]. The experimental results are mainly obtained by low - 

energy electron diffraction (LEEDS) [1,2] which, if the measurements are analyzed by multiple – scattering calculations, 

enables the determination of the atomic positions at the surface [2]. These studies have demonstrated that the outermost 

atomic layer of most clean metal surfaces shows an inward relaxation; that is, that the spacing between the top two layers is 

smaller than the bulk interlayer spacing. The top – layer relaxation is often accompanied by smaller shifts of the second and 

third layers, which can be directed either inward or outward. As a general rule, the magnitude of the relaxation is larger for 

rough surfaces than for smooth ones, and in many cases a reconstruction of the surface is also observed. 

    Early theoretical efforts for describing the phenomenon of relaxation started with the self – consistent jellium model of 

Lang and Kohn [3], followed by the electrostatic model of Finnis and Heine [4], based on a smoothing of the electron charge 

density parallel to the surface. Allan and Lannoo [5] presented a tight – binding calculation that indicated the inward 

displacement of the surface layer observed, with few exceptions, experimentally. The damped oscillatory character of 

multilayer relaxation was predicted later by Barnett et al. [6, 7], who included the evaluation of the screening response of the 

conduction electrons to the relaxed ionic system. Later, Jiang et al. [8] developed an empirical version of the point ion model 

which provides good agreement with experimental results for Fe and Al. However, the predictive power of this model is 

limited by the need of a parameter adjusted to experimental relaxations. Other theoretical works include the total energy 

calculations of Ho and Bohnen [9], Fu et al. [10], Eguiluz [11], Davenport and Weinert [12], Hamann and Feibelman [13, 14] 

and Methfessel et al. [15].   

The experimental determination of structures of clean surfaces is quite extensive [16]. But, while the body of experimental 

work grows, first – principles theoretical calculations are more limited because of the computational difficulties for cases of 

low symmetry. Thus, in the last decades, there has been a trend to complement these costly calculations by simple, semi - 

empirical methods, which properly describe the energetic of defects in metals. Two such methods, the embedded atom 

method (EAM) [17], based on density functional theory, and equivalent crystal theory (ECT) [16, 18 – 20], based on 

perturbation theory have been extensively used to that effect. Both methods have been applied to the study of surface 

relaxation [16, 18-20, 21-24].    

Surface energy and surface relaxation of fcc and bcc materials [16, 18-20] have been calculated using the original equivalent 

crystal theory method (ECT) developed by Smith and co-workers [18-20]. Recently, an extension of the ECT was introduced 

by Zypman and Ferrante [25]. The analytical equivalent crystal theory (AECT) which has been shown to increase the 

computational speed of the ECT has also been extensively used to describe the energetic of defects in metals [26, 27].  
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However, it has not been applied to calculate surface relaxation in metals. Our aim therefore, is to present the first AECT 

surface relaxation and surface energy of the top layers of the (0001) surface of hcp metals. In this work, we ignore parallel 

relaxation as well as surface reconstruction and dealt only with rigid perpendicular translation of the near surface planes.  

This paper is structure as follows. In section 2, we give a brief discussion of the analytical equivalent crystal theory method 

(AECT). In section 3, we discuss the AECT method of calculating the surface relaxation and surface energies of hcp metals. 

The results of surface energies and relaxations for 10 hcp metals are reported in section 4, along with the results obtained by 

other workers. Section 5, summarizes our main conclusions.   

 

2.0 The analytical ECT method 

In ECT the total energy of a collection of atoms near a defect is the sum of individual energy contributions U(aeq), where aeq 

is called an equivalent lattice parameter and U(aeq), is explicitly given by the Universal binding energy relation (UBER) [17] 

which is simply parameterized in terms of physically known constants in the Rydberg function. In ECT an atom near a defect 

is viewed as sensing a reduced or increased electron density. This condition is then interpreted as a point on the UBER in 

terms of an expanded or contracted perfect crystal. Perturbation theory is used to obtain the equivalent lattice parameter of 

the expanded or contracted crystal, aeq
in terms of a0 the lattice parameter corresponding to the perfect crystal. Once aeq

 is 

known, the energy of the atom near the defect is obtained from that point on the UBER. The value of aeq
 is obtained in 

terms of a0
 from the inversion of the basic ECT transcendental equation. Although conceptually simple, the inversion 

process represents the computational time consuming step in the implementation of the algorithm. 

The implementation of ECT involves a perturbation equation that determines the energy of a solid with a defect in terms of a 

perfect crystal of the same substance expanded or contracted from the equilibrium lattice parameter to a new “equivalent” 

lattice parameter. This procedure is equivalent to finding an embedding electron density . A typical atom at a given location 

is embedded in a density  produced by the electronic charge density of the remainder atoms in the system. The yet unknown, 

equivalent nearest-neighbour distance, Req satisfies  

  ])]/1(exp[)()exp( 2221 eq

p

eqeq

p

eq RcRcNRRN                                         (1) 

where N1, is the number of nearest neighbours in the equivalent crystal, N2 is the number of next-nearest neighbours, 2c
is 

the ratio of the next-nearest-neighbour distance to the nearest-neighbour distance, and α, p and λ are known material-

dependent constant. In many applications of ECT to evaluate defect formation energies,  on the right-hand side of Eq. (1), is 

written in a form similar to the left-hand side. For example, the density produced by neighbours on an atom next to a vacancy 

is 
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2 NN   because the atom in question loses one nearest-neighbour (where the vacancy is located) 

but loses no second nearest  neighbour. In this example, the lattice is unrelaxed and consequently R0 represents the nearest 

neighbour distance of the perfect crystal. This shows explicitly that Req is the unknown in Eq. (1). Once Req is obtained, ECT 

uses this value in the UBER function, U(aeq).  The corresponding energy cost is then U(aeq) – U(ao).  In what follows, we 

adopt the method of Zypman and Ferrante [25].     
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The constant  is about unity and 12 c , thus > 0, which is a conservative lower bound for . By using appropriate 

values from Table 1, one finds that 08.0221  ypp eycn 
 in Table 2. Thus, in Eq. (4), the second term inside the 

parenthesis is much smaller than unity, and therefore it is dropped in many real applications. Thus, the problem reduces to 

finding the roots of 

xyy p  )exp(          (5)  

A sketch of Eq. (5) is shown in Fig.1. In Fig.1, the root y
1
corresponds to the smaller lattice parameter while the root y

2
 

corresponds to the larger lattice parameter. Creating a vacancy effectively lowers the atom density thereby increasing y  

[20]. Thus the physically accepted root is y
2

. 

Eq. (5) can now be recast in the Lambert form:  
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where W-1 is the Lambert function [29, 30]. The sub index “-1” labels the branches. The Lambert function has an infinite 

number of complex branches with only two purely real, the branches known as “0” and “-1”. 

     Define ( MM xy ,
) as the point corresponding to the maximum attainable density, as indicated in Fig.1. My

may be found 

by setting 

MYY
dy
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to zero from Eq.(4)  thus 
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Next, m  and Mmy  are obtained as defined in Ref. [25]. The procedure for obtaining them is asfollows. Eq. (8) cannot be 

solved analytically for My , but it can be solved for  as  
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   The only non-trivial solution to Eq. (10) is for the argument of the Zero branch to be -1/e. For a complete discussion of 

equations (8) to (10), the interested reader is referred to the work of Zypman and Ferrante [25], where the details can be 

found. According to Zypman and Ferrante, the smallest possible value of
)( minyy 

 is given as 

)( 2
210min

e

c
nWpy

p

          (11) 

Eq.(11) was used to evaluate the miny
 in Table 2. 
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3.0 Surface energy calculation 

3.1  Rigid surface 
In this section, we implement the analytical algorithm by Zypman and Ferrante for the ECT. The surface energy and surface 

relaxation of the (0001) plane of 10 hcp metals are obtained by this algorithm. Consider a rigid surface where no interlayer 

relaxation is allowed. Therefore, all  

Bond lengths and angles retain their bulk equilibrium values. Thus ][][ *

3

**

2

*
aa FF  ][ *

4

*
aF  

0 . The surface energy is therefore obtained by solving for the „volume‟ term represented by ][ *

1

*
aF only. Even with the 

above simplification, the calculation of the surface energy of hcp metals, within the ECT method, unlike the bcc and fcc 

metals, is not straight forward. This is mainly due to the fact that the 12 nearest-neighbour atoms of the hcp structure are not 

all at the same distance. Six of them are at a distance 1nnR , while the other six are at a slightly different distance 2nnR . 

     In this study we have adopted the convention that the smaller distance will always be denoted as 1nnR
. If a and c are the 

lattice constants for the hcp metals, then for all the hcp metals considered in this study, 
2/122

1 ]12/)34[( caRnn   , and 

aRnn 2 , for the ideal hcp ratio of 3/8 . For hcp structure, 6 atoms are at the next nearest-neighbour distance 

2/122 ]12/)316[( caRnnn  . In Ref. [35], the surface energy calculations for the hcp metals were organised into three 

theoretical models of interest because of the complexity of the hcp structure.  Here, we neglect models II and III of Ref. [35] 

and concentrated on model I, the true ECT model. Results from this model using analytical ECT will be compared with other 

theoretical results and experiments. 

       In order to obtain the density 


of the (0001) plane, we notice that a typical surface atom has lost 3 nearest neighbours 

(out of 12 for an atom in the bulk) and 3 next nearest neighbours (out of 6 for a bulk atom). Hence, 
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Solving Eq. (16), we obtain the value of the electron density . 

Next, we solve for x from the relation 
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and then using the ProductLog function in Mathematica, we get 
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Now, after obtaining the value of x from Eq. (17), we then compute the nearest neighbour distance Req from the relation 



y
Req             (19) 

Once the value of y has been obtained from Eq.(18) and knowing the value of the material constant , we can then calculate 

the value of Req from Eq. (19). Next, we compute the lattice parameter aeqfrom 

eqeq Rca 2            (20) 

where c2 = Rnnn/ Rnn1. 

    Once the values of Req are known from Eq. (19), then the values of a
*
 and F

*
 can be calculated directly [20]. The surface 

energy 001
 is then calculated from the formula [35] 
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The sum over j includes only one atom per atomic layer and usually only a few layers need be included for metal low index 

planes. In fact, for the (001) hcp metal surface, only the outer most surface layer is involved. 
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3.2  Relaxed Surface 

Now, let consider the simplest surface relaxation, that is, a rigid displacement of the top surface layer towards the bulk. Then, 

the contribution from the higher order anisotropic terms must be included. The assumption here is that only the surface plane 

is allowed to relax, and only perpendicular relaxation was considered. Letting the planes close to the surface relax turns on 

the other three contributions to the energy. Some bonds are compressed, contributing to ][ *

2

*
aF , the bond angles near the 

surface as well as the difference between face diagonal are distorted, generating an increase of energy via ][ *

3

*
aF and

][ *

4

*
aF . Also, allowing the atoms in the surface region to relax introduces the additional complexity of including in the 

calculation more non-equivalent atoms, located in deeper layers. Many-atom effects, which are represented in the ECT by the 

inclusion of the three atom bond-angle anisotropy and the four-atom face diagonal distortion terms [16,20,36] are necessary, 

but in the case of surface energy calculations of metals, of very little relevance. As have been shown in other previous ECT 

works [16, 20, 36], they introduce a small correction, usually of the order of 1 to 2% of the leading term (Eq. (2) of Ref. [20]. 

Therefore, the last two terms of the ECT expansion have been neglected in this study. This is however not the case for 

semiconductors, where angular anisotropies are a significant contribution to the surface energy.   

In this work, we concentrated on the perpendicular relaxation of the top layer )( 12d surface of the (0001) face of hcp metals, 

ignoring parallel relaxation as well as surface reconstruction. Although some of these surfaces are known to reconstruct, we 

did not look for this effect in our calculations. Figure 2 shows the (0001) planes of hcp metals and the different contribution 

of each plane after the creation of the surface. The reference atom i is on the surface plane j = 1, with the neighbour atoms in 

each plane. Let assume that the top plane (j = 1) is slightly contracted by a distance z towards the first plane below the 

surface (j = 2), but the plane j = 2 as well as any other plane below, are at their normal bulk positions. The rigid interplanar 

spacing is 2/cd   (c is one of the equilibrium lattice parameters of the hcp metal); therefore, the distance between the 

plane j = 1 and j = 2 is zc 2/ . Following the notation of Fig. 2, the AECT equations for the atoms in these planes are: 
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Eqs. (22) and (23) are then solved for each value of  z to obtain the value of electron density , in order to determine the 

corresponding equivalent crystal nearest neighbour distance eqR . 

     The volume contribution to the surface energy is therefore given by 
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is the ratio between the nearest neighbour distance and WSEr  is the undistorted actual crystal and 

3/12 )16/33( carWSE  . 
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Next, the bond compression contributions to the surface energy for the atoms in the planes j = 1 and 2 are computed. The 

AECT equations associated with this defect are:     

)1(0)](exp[)(6)exp(12 000200  jRrRrRARR zz

pp     (29)    

)2(0)](exp[)(3)exp(12 000200  jRrRrRARR zz
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Again, Eqs. (29) and (30) are solved for ρ  in order to obtain .eqR The energy contribution is then 

given by 
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Summarizing, the surface energy of hcp (0001) face, where only the top layer is allowed to relax, is given by 
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4.  Results and Discussion 

In this section we exhibit the results obtained in this study. First, the input data needed for the calculations and the ECT 

constants  ,,, pl  and WSEr  computed with the help of the input data are exhibited in Table 1. We have carried out an 

extensive calculation of surface energies of relaxed (but unreconstructed) (0001) surface for some selected hcp metals. 

Although some of these metals are known to reconstruct, we did not look for this effect in our calculations with the sole 

purpose of generating a large data set of surface energy values from which patterns can be extracted. The equivalent crystal 

nearest-neighbour distance is a very vital parameter in the ECT method, since it is the parameter needed in the calculation of 

surface energy. The AECT results of the unrelaxed and relaxed surface energies for 10 hcp metals are presented in Table 3. It 

can be seen from the table that the values of the unrelaxed (rigid) surface energies are larger than the relaxed values. The 

decrease in surface energy values due to the effect of relaxation is of the order of 4 - 10% as we move from Be to Re. This is 

clearly shown in Fig.3. It is evidence from the table also that the contribution of surface energies from the electron density 

change effect ( volume term) of the ECT is much greater than the bond-compression term, thus justifying the neglect of the 

other many-body terms usually associated with the ECT method [16,36]. 

The results of surface energies obtained by different workers for 10 hcp metals are presented in Table 4. The Table contains 

theoretical results [37, 38, 39-42] and experimental results [43].The theoretical methods include, modified embedded atom 

method (MEAM) [39, 40], analytical modified embedded atom method (AMEAM) [41], empirical electron theory (EET) 

[42], and first-principles calculation [37, 38]. The experimental values are determined from measurements of the surface 

tension of liquid metals extrapolated through a liquid-solid phase transition. From Table 4, it can be seen that our relaxed 

AECT surface energy results are in good agreement with experiment and first-principles calculations. Our results for 3d, 4d, 

and 5d metals differ from reported experimental values by about 29% and from first-principles values by about 18%. 

However, it must be pointed out that experimental measurements of the surface energy are more commonly found for 

polycrystalline materials. Figure 4 shows a plot of our surface energy results compared with first-principles values [37], 

semi-empirical values [39] and experimental values [43]. The figure exhibits the typical parabolic dependence on the d 

occupation which is already well known [15, 37], and in accord with the simple picture of d-electron contribution to surface 

energy suggested by Friedel [44]. For the semi-empirical models whose results are presented in Table 4, with the exception 

of Refs. [39, 40] our surface energy results are uniformly larger and closer to experiment and first-principles calculations 

except for Hf and Tc where Ref. [42] predict otherwise. AECT results are also in reasonable agreement with the results of 

Baskes and Johnson [39].However, it should be noted that our surface energy results listed in Table 4 are for the relaxed 

surface as compared to the other theoretical works in the same table where relaxation effect were not taken into account. 

Notwithstanding, our present AECT results still compare well with other theoretical and experimental values. Hence, for a 

consistent comparison of our AECT surface energies with ab initio and other semi-empirical theoretical calculations, the 

effect of surface relaxation commonly ignored in surface energy studies should be included in future work. 
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Table 1: Pure metal properties: Lattice constants a and c, and cohesive energy E are from Ref. [29], Bulk modulus B are 

from Refs. [29,30] and experimental monovacancy formation energies 
f

VE1 for Mg, Ti, Zr,and Zn are from Ref. [30], while 

f

VE1 for other metals are assumed to beapproximately 1/3 of cohesive energy [30-32]. 

Element ΔE(eV) 
)(

1
eVE

f

v

 

a(Ǻ) c(Ǻ) 
B(

31110 Jm ) 
p l (Ǻ)  (Ǻ) α(Ǻ-1) rWSE(Ǻ) 

Be 3.32 1.11 2.27 3.59      1.144   2 0.315 0.886 1.576 1.241 

Mg 1.52 0.80 3.21 5.21      0.369   4 0.313 0.881 1.694 1.771 

Sc 3.90 1.30 3.31 5.27      0.435   6 0.458 1.288 2.247 1.814 

Ti 4.85 1.55 2.95 4.68      1.097   6 0.341 0.959 2.712 1.615 

Y 4.37 1.46 3.65 5.73      0.423   8 0.470 1.320 2.691 1.991 

Zr 6.25 1.75 3.32 5.15      0.973   8 0.393 1.103 3.072 1.771 

Tc 6.85 2.28 2.74 4.40      2.970   8 0.255 0.717 3.740 1.506 

Ru 6.74 2.25 2.71 4.28      3.152   8 0.248 0.696 4.001 1.481 

Hf 6.44 2.15 3.19 5.05      1.106 10 0.377 1.058 3.724 1.745 

Re 8.03 2.68 2.76 4.46      3.715 10 0.246 0.691 4.409 1.520 

 

Table 2: Values of y ( =ymin) ,γ and z for 10 hcp metals. 

 
  Element 

miny  
1)

1
1( 2  c




 

ypecnz  221  

      Be        1.717         1.453     0.084 

      Mg        3.534         1.367     0.016 

Sc        5.261         0.919     0.033 

      Ti        5.258         0.977     0.025 

      Y        6.906         0.836     0.028 

Zr        6.889         0.863     0.024 

Tc        6.937         0.953     0.011 

Ru        6.914         0.944 0.013 

Hf        8.518         0.792 0.021 

      Re        8.558         0.885 0.008 

Table 3: Rigid and relaxed surface energies (in 
3Jm ) of the (0001) surface of hcp metals 

Element Rigid 

 

                            Relaxed 

T 1 2
 

    Be 1.947     1.757        1.707        0.050 

    Mg 0.672     0.633        0.624        0.009 

Sc 0.959     0.909        0.891        0.018 
    Ti 1.470     1.369        1.310        0.059 

    Y 0.810     0.766        0.761        0.005 

Zr 1.388     1.305        1.291        0.014 
Tc 2.619     2.455        2.398        0.057 

Ru 2.384     2.186        2.123        0.063 

Hf 1.573     1.500        1.476        0.024 
    Re 3.066     2.940        2.828        0.112 

 

Table 4: Experimental and theoretical surface energies( in Jm
-2

) for the (0001) surface of hcp metals. 

 
Element  AECT(Present) Semi-empirical calculations First-principles calculations Expt 

   Be 1.757 1.650a1.286b1.273c1.527d 2.122e 1.834f 2.700g 

   Mg 0.633 0.900a 0.310c0.289d 0.642e 0.792f 0.760g 

Sc 0.909 1.355a0.706c0.816d 0.820e 1.834f 1.275g 

   Ti 1.369 1.962a1.824b1.033c1.402d 1.950e 2.632f 2.100g 

   Y   0.766 1.001a0.864b0.623c0.737d 0.680e 1.506f 1.125g 

Zr   1.305 2.302a0.988c1.230d 1.530e 2.260f 2.000g 

Tc   2.455  2.654d 2.800e 3.691f 3.150g 

Ru   2.186 3.191a2.616b1.281c 3.320e 3.928f 3.050g 

Hf   1.500 2.041a1.854b0.992c1.786d 1.750e 2.472f 2.150g 

   Re   2.940 3.940a 1.682c2.941d 3.270e 4.214f 3.600g 
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a Modified embedded atom method(MEAM) calculation, Ref.[39] 
b Modified embedded atom method(MEAM) calculation, Ref.[40] 
c Analytical modified embedded atom method(AMEAM) calculation, Ref.[41] 
d Empirical electron theory (EET) calculations, Ref.[42] 
e LMTO-ASA calculations, Ref.[37] 
f FCD- GGA, Ref.[38] 
g Experiment, Ref.[43] 
 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Graphical illustration of Eq. (5) showing the appearance of two roots. The root 1y is to  the left of the maximum My  

that corresponds to a lattice parameter smaller than ao ,while the root 2y to the right of My corresponds to the lattice 

parameter larger than ao . 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.2.hcp (0001) planes after the creation of the surface, and the neighbour atoms in each plane to the reference atom i. The 

reference atom i is on the surface plane j = 1 in (i), while it is on the plane j = 2 in (ii). The planes indicated by dash lines are 

no longer there after the creation of the surface. 

 

 

 

 

            

 

 

 

         

 

 

 

 

           

 

 

Fig.3. comparison of the rigid and relaxed AECT surface energies for the hcp (0001) surface for sp, 3d, 4d,and 5d metals. 

Solid diamond depicts rigid surface energy results and solid squares depict relaxed surface energy. 
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Fig.4.The calculated surface energies for the (0001) surfaces for sp, 3d, 4d and 5d metals. Solid  diamond indicates results 

from AECT, compared to the structure independent surface energies derived from the  surface tension of the liquid metals 

depicted  by stars [43], ab initio calculations [37] depicted by solid triangle, and semi-empirical calculations [39] depicted  by 

solid squares. 

 

5.0 Conclusion 

This study examined the effect of relaxation on the calculated surface energy for 10 hcp metals using the analytical 

equivalent crystal theory method. We have thus, successfully included the effect of relaxation for the first time to the surface 

energy results of the AECT method first proposed by Zypman and Ferrante [25] for fcc metals only. The decrease in the 

calculated surface energy values due to the effect of relaxation have been found to be of the orderof 4 - 10%. 

The surface energies of the 10 hcp metals are in good agreement with the available first-principles calculations and 

experimental data. The results are also in reasonable agreement with the work of Baskes and Johnson [39]. Furthermore, the 

calculated surface energies for the 3d, 4d and 5d metals have been showed to exhibit the typical parabolic dependence on the 

d occupation as suggested by Friedel [44].  
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