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Abstract 
 

Climate and rainfall are highly non-linear and complicated phenomena, which 

require classical, modern and detailed models to obtain accurate prediction. In this 

paper, we present tools for modelling and predicting the behavioural pattern in 

rainfall phenomena based on past observations. The paper introduces three 

fundamentally different approaches for designing a model, the statistical method 

based on autoregressive integrated moving average (ARIMA), the emerging fuzzy 

time series (FTS) model and the non-parametric method(Theil’s regression). In order 

to evaluate the prediction efficiency, we made use of 31 years of annual rainfall data 

from year 1982 to 2012 of Ibadan, Oyo State, Nigeria. The fuzzy time series model has 

it universe of discourse divided into 13 intervals and the interval with the largest 

number of rainfall data is divided into 4 sub-intervals of equal length. Three rules 

were used to determine if the forecast value under FTS is upward 0.75–point, middle 

or downward 0.25-point.  ARIMA (1, 2, 1) was used to derive the weights and the 

regression coefficients, while the theil’s regression was used to fit a linear model. The 

performance of the model was evaluated using mean squared forecast error (MAE), 

root mean square forecast error (RMSE) and Coefficient of determination (   . The 

study reveals that FTS model can be used as an appropriate forecasting tool to predict 

the rainfall, since it outperforms the ARIMA and Theil’s models. 
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1.0     Introduction 

Climate change seems to be the foremost global challenge facing humans at the moment, even though it seems that not all 

places on the globe are affected. World leaders, union leaders, pressure groups and others who have shown concern have 

been meeting to find a lasting solution to the „acclaimed‟ dilemma. The scientific community has not been left out as causes 

and solutions are being proffered and it is expected to linger on for a long time, since rainfall is an indicator of climate 

change [1 – 3]. 

Rainfall is a climate parameter that affects the way and manner men lives. It affects every facet of the ecological system, flora 

and fauna inclusive. Hence, the study of rainfall is important and cannot be over emphasized [4]. Aside the beneficial aspect 

of rainfall, it can also be destructive in nature; natural disasters like floods and landslides are caused by rains [5]. Globally, 

lots of studies have been carried out on rainfall. A few of them is discussed briefly as follows. In [6], different trends across 

Sri Lanka using 100 years data were observed. Some parts recorded decreasing trend, some increasing trend while some 

locations showed no coherent trend. They also showed that the trend characteristics vary with the duration of the data 

analyzed. The trend analysis of rainfall over Jordan in [7] was examined picking three close-by locations. This study covered 

a period of 81 years (1922 – 2003). Although, different trends for different seasons across the three stations were observed, 

however, one of the stations showed a decline in both the rainy days and the total amount of rainfall after the mid 1950s. 

While in Turkey, the trend within a 64 year period (1929 – 1993) of rainfall for 96 stations was examined [8]. The overall 

result indicated that the trend in precipitation is downward, nonetheless, there are few stations that showed increasing trend. 

Acknowledging some of the research that has been done, it is very important to discuss climatic changes as it has contributed 

to the instability of rainfall in Nigeria, then it becomes a very important and sensitive issue which requires adequate attention 

from governments, corporate organisations and researchers. Since climate and rainfall are highly non-linear and complicated  
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phenomena, which require serious and vivid investigation and analysis.  Then, this research is centred on analysing the 

pattern and structure of rainfall over 30 years in Ibadan, South Western, Nigeria. Hence forecast values will be obtained in 

order to plan for the future.  

In order to achieve our set objectives, classical, non-parametric and modern methods of discussing relationship and 

forecasting will be discussed. For classical forecasting method, we will consider autoregressive integrated moving average 

(ARIMA) which is a concept of autoregressive moving average while theil‟s regression will be used in the concept of non-

parametric, where fuzzy time series method will be used in the concept of modern forecasting method. ARIMA is basically a 

linear statistical technique and has been quite popular for modelling the time series and rainfall forecasting due to ease in its 

development and implementation.  

In contrast, fuzzy time series is another important modern forecasting method introduced by Song and Chissom in 1993 and it 

is believed that the theory of fuzzy time series overcome the drawback of the classical time series methods, it has the 

advantage of reducing the calculation time and simplifying the calculation process. Based on the theory of fuzzy time series, 

Song et al. presented some forecasting methods [9 – 12] and these methods are now being used in several fields to obtain 

meaningful results. Furthermore, theil‟s regression is a simple, non-parametric approach to fit a straight line to set of two 

points. This method was introduced by TheilSen in 1950 and it is has the ability to fit a linear trend when no assumptions 

about the population distribution from which the data was taken are known.   

However, the three models will be used to forecast values for rainfall behaviour and the results will be compared to determine 

maybe the result obtained using classical forecasting method will better the result obtained for the non parametric and 

modern methods and vice verse. 

 

2.0  Materials and Methods 

2.1  Data Exploration 
The pattern and general behaviour of the series is examined from the time plot. The series will be examined for stationarity, 

outliers and gaussianity. Test for stationarity will be carried out using correlogram. Details of the test procedures can be 

found in [13].  

 

2.2   ARIMA Theory 

ARIMA (autoregressive integrated moving average) models are generalizations of the simple 

AR model that use three tools for modelling the serial correlation in the disturbance.  The first tool is the autoregressive, or 

AR, term. The       model use only the first-order term, but in general, you may use additional, higher-order AR terms. 

Each AR term corresponds to the use of a lagged value of the residual in the forecasting equation for the unconditional 

residual. An autoregressive model of order     ,       has the form: 

                                                                                

The second tool is the integration order term. Each integration order corresponds to differencing the series being forecast. A 

first-order integrated component means that the forecasting model is designed for the first difference of the original series. A 

second - order component corresponds to using second differences, and so on. 

The third tool is the MA, or moving average term. A moving average forecasting model uses lagged values of the forecast 

error to improve the current forecast. A first order moving average term uses the most recent forecast error; a second-order 

term uses the forecast error from the two most recent periods, and so on. An MA(q ) has the form: 

                                                                            

The autoregressive and moving average specifications can be combined to form an ARMA (p, q) specification: 

                                                                       

 

2.2.1  Principles of ARIMA Modelling  
In ARIMA forecasting, you assemble a complete forecasting model by using combinations of 

the three building blocks to be described below. The first step is forming an ARIMA model for a series of residuals by 

looking into its autocorrelation properties. We will make use the correlogram view of a series for this purpose. This phase of 

the ARIMA modelling procedure is called identification.  

The next step is to decide what kind of ARIMA model to use. If the autocorrelation function 

dies off smoothly at a geometric rate, and the partial autocorrelations were zero after one lag, then a first-order autoregressive 

model is appropriate. Alternatively, if the autocorrelations were zero after one lag and the partial autocorrelations declined 

geometrically, a first order moving average process would seem appropriate.  

 

2.2.2   Estimating ARIMA Models 

To specify your       model, you will difference your dependent variable, if necessary, to account for the order of  
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integration and describe your structural regression model (dependent variables and regressors) and add any          

terms. The d operator can be used to specify differences of series. To specify first differencing, simply include the series 

name in parentheses after d. For example,             specifies the first difference of rainfall. 

More complicated forms of differencing may be specified with two optional parameters,                specifies the 

    order difference of the series  : 

                                                                  

Where   is the lag operator. 

 

2.3 Basic Concept of Fuzzy Time Series 

The definition of fuzzy time series based on fuzzy sets in [14] and [15] as follows: Let   be the universe of discourse,  

               and let   be a fuzzy set in the universe of discourse   defined as follows: 

          ⁄           ⁄                      ⁄                            

Where   is the membership function of        [   ]        indicates the grade of membership of   in the fuzzy set  ,  

       [   ] and        
Let                     be the universe of discourse and be a subset of  , and let fuzzy set                 be 

defined in     . Let      be a collection of                . Then,      is called a fuzzy time series of         
           .  

If      is caused by         denoted by               then this relationship can be represented by      
                 where the symbol       denotes the Max-Min composition operator;          is a fuzzy relation 

between       and        and is called the first-order model of     .  

Let      be a fuzzy time series and let          be a first-order model of     . If                     for any 

time  , then      is called a time-invariant fuzzy time series. If          is dependent on time  , that is,          may 

be different from             for any u , then      is called a time-variant fuzzy time series. 

 

2.3.1  Fuzzy Time Series Model 
Using the time-variant fuzzy time-series model, the following steps form the procedure. 

Step 1:  Define the universe of discourse within which fuzzy sets are defined. 

Step 2:  Partition the universe of discourse   into several even and equal length intervals. 

Step 3:  Determine some linguistic values represented by fuzzy sets of the intervals of the universe of discourse. 

Step 4:  Fuzzify the rainfall data. 

Step 5:  Choose a suitable parameter  , where      calculate           and forecast the rainfall as follows: 

                                                                              

where     denotes the forecasted fuzzy rainfall of year  ,        denotes the fuzzified 

rainfall of year    , and 

                                                 
                                                              

where  is called the “model basis” denoting the number of years before  ,       is the Cartesian product operator, and   is 

the transpose operator. 

Step 6:  Defuzzify the forecasted fuzzy rainfall using neural nets. 

It very important to note that we will divide each interval derived in        into four subintervals of equal  length, where the 

0.25-point and 0.75-point of each interval are used as the upward and downward forecasting points of the forecasting. Three 

rules were used and they are:  

      If |(the difference of the rainfall between years     and    )|/2  ＞ half of the length of the interval corresponding to 

the fuzzified rainfall    with the membership value equal to 1, then the trend of the forecasting of this interval will be upward 

and the forecasting rainfall falls at the 0.75-point of this interval; if |(the difference of the rainfall data between years     

and    )|/2 ＝ half of the length of the interval corresponding to the fuzzified rainfall    with the membership value equal 

to 1, then the forecasting rainfall falls at the middle value of this interval; if |(the difference of the rainfall data between 

years     and    ) )|/2 ＜ half of the length of the interval corresponding to the fuzzified rainfall    with the membership 

value equal to 1, then the trend of the forecasting of this interval will be downward, and the forecasting rainfall falls at the 

0.25-point of the interval. 

      If (|the difference of the differences between years n-1 and n-2 and between years n-2 and n-3| × 2 ＋ the rainfall data of 

year n-1) or (the rainfall of year n-1 - |the difference of the differences between years n-1 and n-2 and between years n-2 and 

n-3| × 2) falls in the interval corresponding to the fuzzified rainfall     with the membership value equal to 1, then the trend 

of the forecasting of this interval will be upward, and the forecasting rainfall falls at the 0.75-point of the interval of the 

corresponding fuzzified rainfall    with the membership value equal to 1; if (|the difference of the differences between years  
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n-1 and n-2 and between years n-2 and n-3|/2＋ the rainfalls of year n-1) or (the rainfalls of year n-1 - |the difference of the 

differences between years n-1 and n-2 and between years n-2 and n-3|/2) falls in the interval of the corresponding fuzzified 

rainfall     with the membership value equal to 1, then the trend of the forecasting of this interval will be downward, and the 

forecasting value falls at the 0.25-point of the interval of the corresponding fuzzified rainfall    with the membership value 

equal to 1; if neither is the case, then we let the forecasting rainfall be the middle value of the interval corresponding to the 

fuzzified rainfall     with the membership value equal to 1. 

      If (|the difference of the differences between years n-1 and n-2 and between years n-2 and n-3|/2 ＋ the rainfall data of 

year n-1) or (the rainfall data of year n-1 - |the difference of the differences between years n-1 and n-2 and between years n-2 

and n-3|/2) falls in the interval of the corresponding fuzzified rainfall    with the membership value equal to 1, then the trend 

of the forecasting of this interval will be downward, and the forecasting rainfall falls at the 0.25-point of the interval 

corresponding to the fuzzified rainfall    with the membership value equal to 1; if (|the difference of the differences between 

years n-1 and n-2 and between years n-2 and n-3| × 2 ＋ the rainfall data of year n-1) or (the rainfall data of year n-1 - |the 

difference of the differences between years n-1 and n-2 and between years n-2 and n-3| × 2) falls in the interval 

corresponding to the fuzzified rainfall    with the membership value equal to 1, then the trend of the forecasting of this 

interval will be upward, and the forecasting rainfall falls at the 0.75-point of the interval corresponding to the fuzzified 

rainfall    with the membership value equal to 1; if neither is the case, then we let the forecasting rainfall be the middle value 

of the interval corresponding to the fuzzified rainfall     with the membership value equal to 1. 

 

2.4   Theil’s Regression 

This is a simple and non-parametric approach for fitting a straight line to a set of      -points is the theil‟s method which 

assumes that points                             are described by the equation;         
The calculation of   and   follows the steps outlined below; 

 All   data points are ranked in ascending order of   values. 

 The data are separated into two equal     groups, the low     and the high     group. If   is odd the middle data 

point is not included in either group. 

 The slope    is calculated for all points of each group, i.e,    (          ) (         )⁄  for 

                                                        
 The median of the   slope values             is calculated and it is taken as the best estimate of the slope     of 

the line,  i.e                        

 For each data point        , the value of the intercept    is calculated using the previously calculated slope    that is 

          for          . The median of the   intercept values            is calculated using and it is 

taken as the best estimate of the intercept     of the line, that is                       
 

2.5    Forecast Evaluation 

Forecasts of                                                will be computed for in-sample values. The optimal 

forecasts values are then evaluated using the mean squared forecast error (MAE) defined as, 

    
 

 
∑( ̂    )

 
 

   

                                                                                              

the root mean square forecast error (RMSE) is defined as: 

     √
 

 
∑( ̂    )

 
 

   

                                                                                              

The actual and predicted values for corresponding   values are denoted by  ̂        respectively.  The smaller the values of 

RMSE and MAE, the better the forecasting performance of the model. 

 

3.0  Results and Discussions.  
The annual rainfall of Ibadan in South Western region of Nigeria which is bounded by            will be used for this 

study. The data was obtained from the Nigerian Meteorological Agency, Lagos. It consists of the annual rainfall from 1981 to 

2012 (31 years). 
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Table 1: Unit Root Test Using Augmented Dickey-Fuller (ADF) 

   t-Statistic   Prob.* 

Augmented Dickey-Fuller test statistic -3.584924  0.0150 

Test critical values: 1% level  -3.769597  

 5% level  -3.004861  

 10% level  -2.642242  

*MacKinnon (1996) one-sided p-values.  

 

                                      

Autocorrelation Partial Correlation  AC   PAC  Q-Stat  Prob 

   *****|  .   |    *****|  .   | 1 -0.634 -0.634 12.896 0.000 

     .  |**.   |      .**|  .   | 2 0.249 -0.256 14.956 0.001 

     .**|  .   |      ***|  .   | 3 -0.263 -0.407 17.351 0.001 

     .  |**.   |      .**|  .   | 4 0.231 -0.257 19.263 0.001 

     .  |  .   |      .  |* .   | 5 0.019 0.126 19.276 0.002 

     .**|  .   |      . *|  .   | 6 -0.222 -0.200 21.208 0.002 

     .  |* .   |      . *|  .   | 7 0.185 -0.096 22.606 0.002 

     .  |  .   |      .  |* .   | 8 -0.050 0.102 22.712 0.004 

     .  |  .   |      .  |  .   | 9 0.050 0.002 22.825 0.007 

     . *|  .   |      .  |  .   | 10 -0.110 -0.018 23.398 0.009 

     .  |  .   |      .  |  .   | 11 0.027 -0.040 23.435 0.015 

     .  |* .   |      .  |  .   | 12 0.076 -0.060 23.744 0.022 

 

 

 

 

 

 

 

 

                                                                      

 

                                   

Autocorrelation Partial Correlation  AC   PAC  Q-Stat  Prob 

     . *|  .   |      . *|  .   | 1 -0.117 -0.117 0.4240  

     .**|  .   |      .**|  .   | 2 -0.290 -0.308 3.1417  

     .*|  .   |      *|  .   | 3 -0.276 -0.399 5.7067 0.017 

     .  |**   |      .  |*.   | 4 0.010 0.241 6.602 0.003 

     .  |  .   |      . *|  .   | 5 -0.034 -0.151 6.645 0.009 

     .**|  .   |      .**|  .   | 6 -0.265 -0.280 7.318 0.006 

     .  |  .   |      .  |**.   | 7 0.068 0.239 8.504 0.013 

     .  |**.   |      .  |* .   | 8 0.341 0.166 8.679 0.004 

     .  |  .   |      .  |  .   | 9 -0.007 -0.010 8.781 0.007 

     .**|  .   |      .  |* .   | 10 -0.009 0.080 9.560 0.003 

     .  |  .   |      .  |  .   | 11 -0.043 -0.018 9.651 0.005 

     .  |* .   |      . *|  .   | 12 0.015 -0.074 10.643 0.004 
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Fuzzy Time Series Steps 

      : The universe of discourse   [        ]   and it is partitioned into six even and equal length 

intervals                 and      where    

    [       ]     [        ]     [         ]     [         ]     [         ]     [         ]   
      : Get a statistics of the distribution of the rainfall data in each interval. 

 

                                                           

Interval [       ] [        ] [         ] [         ] [         ] [         ] 
Number of rainfall data 1 3 11 10 4 2 

 

The universe of discourse [        ] is re-divided into the following intervals: 

     [       ]      [       ]    [        ]      [         ]       [         ,      [         ] , 

     [               [         ]  

     [         ]      [         ] , 

     [         ] and    [         ] 
      : We define each fuzzy set    based on the re-divided intervals and fuzzify the rainfall data, where fuzzy set   denotes 

a linguistic value of the rainfall data represented by a fuzzy set and        . The membership values of fuzzy set    

either are           . Then, we fuzzify the rainfall data and the linguistic values of the rainfall            . The reason for 

fuzzifying the rainfall data into fuzzified rainfall is to translate crisp values into fuzzy sets to get a fuzzy time series. 

        Establishing fuzzy logical relationships based on the fuzzified rainfall:  

      

      

where the fuzzy logical relationship            denotes “ if the fuzzified rainfall data of year     is    then the fuzzified 

rainfall of year   is   ”.  

       Divide each interval derived in        into four subintervals of equal length, where 

the 0.25-point and 0.75-point of each interval are used as the upward and downward forecasting points of the forecasting.  
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Year Rainfall Trend of the Forecasting Forecasting 

1982 1100.8   

1983 656.2 Middle value 649.5 

1984 1179.3 Upward; 0.75 - point 1168.5 

1985 1138.7 Downward; 0.25 - point 1124.5 

1986 1242 Downward; 0.25 - point 1231 

1987 1356.8 Upward; 0.75 - point 1411 

1988 954 Upward; 0.75 - point 987.5 

1989 1265.5 Middle value 1278 

1990 1177.2 Upward; 0.75 - point 1157.5 

1991 1596.4 Upward; 0.75 - point 1579.5 

1992 1055.5 Middle value 1203 

1993 1095.5 Middle value 1123.25 

1994 1188.2 Upward; 0.75 - point 1115 

1995 1277.5 Middle value 1294.5 

1996 1214.5 Downward; 0.25 - point 1291 

1997 1062.9 Middle value 1292 

1998 1270.7 Middle value 1118.5 

1999 1421.5 Downward; 0.25 - point 1396.25 

2000 1090.3 Middle value 1195.25 

2001 901.7 Middle value 879.5 

2002 1183.8 Upward; 0.75 - point 1056.25 

2003 1258.9 Middle value 1196.5 

2004 1179.3 Upward; 0.75 - point 1258.5 

2005 1200.7 Downward; 0.25 - point 1378 

2006 1745.8 Middle value 1698 

2007 1261.2 Middle value 1642.5 

2008 1290.6 Middle value 1350.5 

2009 935.5 Middle value 987.25 

2010 1475.8 Middle value 1401.5 

2011 1569.5 Upward; 0.75 - point 1503.25 

2012 1678.2 Upward; 0.75 - point 1675.5 
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Model MAE RMSE    

ARIMA 110.23 10.49 0.97882 

Fuzzy Time Series 85.45 9.24 0.98456 

Theil‟s Regression 226.12 15.03 0.83346 

 

3.1 Discussion 

It is evidence from the time plots that rainfall data displays series of cyclical behaviour and this is due to seasonal changes 

yearly. For autoregressive integrated moving average, model building commenced with the examination of the plot of the 

series, the sample plot of the autocorrelation (ACF) and partial autocorrelation (PACF) model description.  The time plot of 

the original series (     ) shows stationarity as confirmed by the Augmented Dickey-fuller test in Table 1 with a p-value of 

0.05, but with seasonal trend.  

 

Since the order of integration of the differenced rainfall series in Table 2 is two, then          a close look of the ACF and 

PACF of the differenced data in Table 2 revealed the ACF dies off smoothly at a geometric rate and the partial 

autocorrelations were zero after one lag and the autocorrelations were zero after one lag and the partial autocorrelations 

declined geometrically, these behaviour shows that               is the appropriate model for the differenced rainfall 

series, that is         
              Therefore the fitted model is given as:  

           

                        

With the white noise variance   ̂ 
  estimated as 17452. In order to use the model obtained for forecast some model diagnostic 

test were carried out. The inverse root of       in Fig. 2 shows that the estimated ARMA process is (covariance) stationary, 

since all AR roots lie inside the unit circle and the estimated ARMA process is invertible, since all MA roots should lie inside 

the unit circle. The correlogram has no significant spike and all subsequent Q-statistics are not highly significant. This result 

clearly indicates there is no need for respecification of the model. However, the forecast of the yearly rainfall from 1982 to 

2012 deviated slightly from the original data,            
 

Under fuzzy time series, we made use of the visual Basic Version 6.0 on a Pentium 4 PC. Table 4 summarizes the forecasting 

results of fuzzy time series method from 1982 to 2012, where the universe of discourse is divided into 13 intervals and the 

interval with the largest number of rainfall data is divided into 4 sub-intervals of equal length. The fuzzy time series forecast 

of the yearly rainfall data from 1982 to 2012 did not deviated much from the original data,                          
Using the non-parametric method (theil‟s regression), we obtain a fitted linear model:                    where   

represents rainfall data and   represents time. 

 

3.2 A Comparison of Different Forecasting Methods 

The performance measures of ARIMA, FTS and theil‟s regression models in terms of numerical computations are shown in 

Table 6. The table indicates that the FTS model outperforms both the ARIMA and theil‟s regression model. While the 

ARIMA model is better than the theil‟s regression model.  The MAE for ARIMA model and theil‟s regression are 110.23 and 

226.12 respectively. While the same MAE is considerably lower at 85.45 for FTS model. The other performance measures 

such as RMSE and    depict that the FTS forecast is superior to ARIMA and theil‟s regression forecast. The forecast graph 

in fig. 3 as well shows clearly that FTS forecast did not deviate much from the original data compared to the two other  
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models. Therefore, our study establishes that FTS method should be favoured as an appropriate forecasting tool to model and 

predict annual rainfall in Ibadan South Western, Nigeria. 

 

4.0  Conclusion 

Complexity of the nature of annual rainfall record has been studied using FTS, ARIMA and Theil‟s regression techniques. 

An annual rainfall data spanning over a period of 1982 – 2012   of Ibadan in South Western, Nigeria was used to develop and 

test the models. The study reveals that FTS model can be used as an appropriate forecasting tool to predict the rainfall series, 

which performs better than the ARIMA and Theil‟s regression models.  
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