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Abstract 
 

This paper studied the steady laminar two – dimensional stagnation point flow of an incompressible 

viscous electrically conducting fluid at stagnation point with heat transfer. Uniform magnetic field is 

applied externally normal to the plane of the wall. Employing similarity transformations, the governing 

partial differential equations are transformed into ordinary differential equations. This were solved in non 

– dimensional state numerically using central differences for the derivatives and Thomas algorithm for the 

solution of the set of discretized equations in the infinite domain 0 . A finite domain in the η-

direction was used instead with η chosen large enough to ensure that the solutions are not affected by 

imposing the asymptotic conditions at a finite distance. Numerical results for the dimensionless velocity 

profiles, the temperature profiles, the local friction coefficient and the local Nusselt number are presented 

for various parameters. These results are presented to illustrate the influence of the Hartmann number, 

suction parameter, heat absorption coefficient and, thermal and mass Grashof numbers. The effects of 

various emerging parameters are seen on the velocity and temperature fields. The values of the wall shear 

stress are also tabulated for different cases. 

 

Keywords:Magneto hydrodynamic fluid, Thomas algorithm, Heat transfer; Boundary layer; Stagnation point, 

 Generative reactions. 

 

1.0     Introduction 

In fluid dynamics, a stagnation point is a point in a flow field where the local velocity of the fluid is zero. Stagnation points 

exist at the surface of objects in the flow field, where the fluid is brought to rest by the object. A stagnation point occurs 

whenever a flow impinges on a solid object. Usually there are other important features of the flow.  

Magnetohydrodynamics has attracted the attention of a large number of scholars due to its diverse applications. In 

astrophysics and geophysics, it is applied to study the stellar and solar structures, matter, radio propagation through the 

ionosphere etc. in engineering it find its application in MHDpumps and generators, convection in porous media has 

applications in geo-thermal energy recovery, oil extraction, thermal energy storage and flow through filtering devices. 

In the history of fluid dynamics, considerable attention has been given to the study of 2-D stagnation point flow. Hiemenz [1] 

derived an exact solution of the steady flow of a Newtonian fluid impinging orthogonally on an infinite flat plate. Stuart [2], 

Tamada [3] and Dorrepaal [4] independently investigated the solutions of a stagnation point flow when the fluid impinges 

obliquely on the plate. Beard and Walters [5] used boundary-layer equations to study two-dimensional flow near a stagnation 

point of a viscoelastic fluid. Dorrepaal et al [6] investigated the behaviour of a viscoelastic fluid impinging on a flat rigid wall 

at an arbitrary angle of incidence. Labropulu et al. [7] studied the oblique flow of a viscoelastic fluid impinging on a porous 

wall with suction or blowing. The Hiemenz flow of a Newtonian fluid in the presence of a magnetic field was first considered 

by Na [8] and later by Ariel [9]. Recently, Okedoye et al [10] reported MHD Flow of a Uniformly Stretched Vertical 

Permeable Surface under Oscillatory Suction Velocity.  

The purpose of the present work is to study the steady laminar MHD flow of an incompressible viscous electrically 

conducting fluid at a stagnation point with heat transfer, in the presence of heat generation. The fluid is acted upon by an 

external uniform magnetic field and a uniform suction or injection directed normal to the plane of the wall.  
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2. 0 Formulation of the Problem  
Consider the two-dimensional stagnation point flow of a viscous incompressible electrically conducting fluid impinging 

perpendicular to a permeable plane directed along the x-axis. This is an example of a plane potential flow which arrives from 

the entire space above the plate and impinges on a flat wall placed at y=0, divides into two streams on the wall and leaves in 

both directions. Here, (u, v) are the components of velocity at any point (x, y) for the viscous flow, whereas (U, V) are the 

velocity components for the potential flow. A uniform magnetic field Bo and a uniform suction or injection with a 

transpiration velocity at the boundary of the plate are given by 0v
 for suction and 0v

 for injection are applied normal to 

the plane.  

Then, for the two-dimensional steady state flow, the continuity and momentum equations, using the usual boundary layer 

approximations [11] and by introducing Lorentz force, reduce to:  
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where ρ, υ, and σ are, respectively, the density, the kinematic viscosity, and the electric conductivity of the fluid and U(x) is 

the horizontal component of the inviscid potential flow velocity above the boundary layer formed over the plate surface. The 

boundary conditions for the velocity problem, assuming the absence of magnetic field in the potential flow region, are given 

by:  

   ,00, xu   00, vxv  , for suction or   00, vxv  for injection,     (3a)  
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where „a‟ is a constant. The temperature distribution can be found from the energy equation which may be written as 

(neglecting the dissipation), 
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whereTis the temperature of the fluid, pc  is the specific heat capacity at constant pressure of the fluid, and k is the thermal 

conductivity of the fluid. The boundary conditions for the temperature problem are given by:  

    ,0, wTxT    ,,  TxT        (5)  

Also the reactant concentration distribution equation can be written as 
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WhereCis the concentration of the chemical species, D is mass diffusion coefficient at constant pressure, and 0A  is the 

chemical reactant parameter of the fluid. The boundary conditions for the reactant problem are given by:  

    ,0, wCxC     CxC ,        (7) 

By introducing the following dimensionless variables and parameters  
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WhereAis the suction parameter; A>0 is for suction and A<0 is for injection, and the governing Equations (1) to (7) reduce to:  

    011 22  GrchGrffMfff      (8) 

    0PrPr   ff        (9) 

    0 SchfhfhSch         (10) 
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here primes denote differentiation with respect to η.  
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The flow Equations (8) to (10) subject to boundary conditions (11) are solved numerically using finite differences. A 

shooting technique is first applied to convert the higher order derivatives to a system of first order differential equations.  

The solution for the non-magnetic case is chosen as an initial guess and the iterations using Euler scheme are continued till 

convergence within prescribed accuracy is achieved, with the corrections incorporated in subsequent iterative steps until 

convergence, which is used to obtain the values of our initial guesses.  Finally, the resulting guesses together with the system 

was solved using generalized Thomas' algorithm.  

The system of equations has to be solved in the infinite domain       A finite domain in the η-direction can be used 

instead with η chosen large enough to ensure that the solutions are not affected by imposing the asymptotic conditions at a 

finite distance. 

Grid-independence studies show that the computational domain 0<η< η∞ can be divided into intervals each of uniform step 

size which equals 0.02. This reduces the number of points between  0  without sacrificing accuracy. The value 

10  was found to be adequate for all the ranges of parameters studied here.  

 

3.0 Results and Discussion 

In this analysis, we investigate the effect of suction  injection  , Hartmann Number        Thermal and mass 

Grashof numbers (Grt, Grc), heat source/sink coefficient  and chemical reaction parameter  . In general, for our case here, 

Pr<1 which means the conduction effects exceeds viscous diffusion the thermal boundary layer is thicker than the velocity 

boundary layer. The study is carried out on velocity, temperature and concentration profiles. 

It could be seen from figure 1 that as suction parameter reduces axial velocity f (η) reduces while as injection increases the 

axial velocity also increases. It is established the fact that decrease in suction implies increase in injection. When the injection 

value is kept constant, the axial velocity increases with increase in thermal Grashof number for cooling of the plate     
  . 

Figure 2 shows the transient velocity profiles )(f  for various values of Hartmann number M . The figure brings out 

clearly the effect of the Hartmann number M  on the velocity boundary layer thickness. Increasing M decreases the velocity 

boundary layer.
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Figure 1: Axial velocity profile 

 

Figure 2: Transient Velocity for various values of HartmannNumber 

 

The effect of M on )(f  is more pronounced for smaller values of M . It could also be deduced that very close to the 

surface, variation in Hartmann number is not significant until the flow approached     . We discovered that a maximum 

velocity is within the body of the fluid far away from the surface as shown by the peak in the profile (Figure 2) 

 

Figure 3: Temperature distributions for various values of Hartmann Number 
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Figure 4: Variation of )(f   for various values of   

 

In Figure 3 as position  approaches    , the effect of Hartmann number becomes significant such that increase in Hartmann 

number brings about increase in temperature. The temperature is maxima at the lowest velocity for highest Lorentz force. 

Also, it could be seen that the temperature close to the surface is higher than the surface temperature as a result of heat loss 

through axial temperature. At        increasing   from 0 to 2.0 increases the temperature by   , at        increasing   

from 0 to 2.0 increases the temperature by 9  and at       increasing   from 0 to 2.0 increases the temperature by 43  

while increase in   furtheras        increase in temperature reduces and decay asymptotically to 0 from      

Figure 4 show that increasing   decreases the velocity boundary layer thickness. It is also clear from Figure 4 that 

increasing the injection velocity increases the velocity, while increasing the suction velocity decreases the velocity. The 

velocity is higher close to the surface for Suction ( >0) and lower for fluid injection ( <0)close to the surface as of 

collision between the fluid material. 

 

Figure 5: Concentration distributions for various values of   

 

Figure 6: Temperature distributions for values of   

 

Figure 5 presents the concentration profile  h  for various values of  . The figure indicates that the species boundary 

layer thickness decreases as   increases. It is clear from the figure that injection increases the concentration since more 
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reactant is being pumped in, and vice versa. For larger values of , the concentration field decreases rapidly. The action of 

fluid injection is to fill the space immediately adjacent to the plate with fluid having nearly the same temperature as that of 

the disk. 

As shown in Figure 6, the effect of fluid injection ( <0) is to decrease the heat transfer significantly by blanketing the 

surface with fluid whose temperature is close to wT . Suction ( >0) has an opposite effect on the heat transfer, since fluid at 

near-ambient temperature is brought to the neighborhood of the surface of the plate. These effects are manifested by the 

progressive flattening of the temperature profile adjacent to the plate. Thus, the injected flow forms an effective insulating 

layer, decreasing the heat transfer from the plate. Suction, on the other hand, serves the function of bringing large quantities 

of ambient fluid into the immediate neighborhood of the plate surface. As a consequence of the increased heat-consuming 

ability of this augmented flow, the temperature drops quickly as we proceed away from the plate. 

 

 
Figure 7: Concentration distributions for various values of thermal Grashof number 

 

 

 
Figure 8: Temperature distributions for various values of thermalGrashof number 

 

In Figure 7, increase in thermal Grashof number brings about decrease in concentration boundary layer. The effect on thermal 

Grashof number on concentration field is that as thermal Grashof number increases more reactant is being consumed. 

 
Figure 9: Velocity distributions for various values of mass Grashof number 
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Figure 10: Velocity distributions for various values of heat source/sinkcoefficien 

 

Figure 8 depict the effect of thermal Grashof number on transverse temperature field. Variation in thermal Grashof number 

for     is less significant until      when increase in thermal Grashof number reduces temperature boundary layer. This 

is shown in figure 8, as thermal Grashof number increases the temperature boundary layer reduces which make the fluid to 

retain more heat far away from the plate. 

The effect of mass Grashof number on transient velocity )(f   is shown in figure 9. Consumption of more chemical species 

will increase the reactivity of the fluid thereby making more molecules available for the process. This in turn brings about 

increase in the velocity boundary layer. Increasing thermal Grashof number further from        variation in thermal 

Grashof number is not significant. 

 

Figure 10 show the transient velocity )(f   profile for various values of heat generation or absorption parameter  . It is 

clear that the effect of the   on the velocity boundary layer thickness is significant close to the surface. Increasing heat 

absorption increases the thermal boundary layer thickness, while increase heat generation reduces the transient velocity 

boundary layer thickness. The effect of  on )(f  is more pronounced for values of between          . It is also 

seen that maximum velocity occurs in the body of the fluid away from the surface within this domain. 

 

 

Figure 11: Temperature distributions for various values  

of heat source/sinkcoefficient 
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It is clear from Figure 11 that the effect of the   on the velocity boundary layer thickness is significant, with heat absorption 

having maximum temperature different from the surface temperature. Increasing heat absorption decreases the thermal 

boundary layer thickness, while heat generation increases the thermal boundary layer thickness. 

Effect of chemical reactivity on velocity, temperature and concentration field is shown in Figure 12. It should be noted here 

that, 0 correspond to generative chemical reaction and 0   correspond to destructive chemical reaction. It is 

observed that increase in generative chemical reaction increases the concentration distribution, while the reverse is the case 

for destructive chemical reaction. Furthermore the concentration is maxima at the plate, that is maximum concentration is the 

concentration at the surface and then decays to zero asymptotically. 

 

4.0 Analysis of dimensionless number on the flow 

We now move to examining some important fluid parameters that are of importance to this work. Such parameters include 

Sherwood number, Nusselt number and Skin – friction coefficient.  We therefore denote and define respectively, Sherwood 

number and Skin – friction coefficient as [10]. 
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The heat transfer at the wall is computed from Fourier's law: 
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Table 1 presents the effect of the parameters M , Gr , Grc , , and  on the wall shear stress fc , heat transfer at the wall 

Nu  and Sherwood number Sh .  

The table shows that increasing the parameter M or  increases the wall shear stress as a result of increasing the resistive 

forces. The variation of g′(0) and h′(0) for various values of M is as the same as the effect on the wall shear stress, both the 

Nusselt and sherwood numbers increases as Hartmann‟s number increases.   

It is clear that increasing M increases the magnitude of fc , Nu  and Sh , and the effect of M  on the wall shear stress 

becomes more pronounced for higher values of M . The table also indicates that the magnitude of Nu  decreases with 

increasing Gr  or Grc  and that for higher values of Gr  or Grc , the effect on the wall shear stress is more pronounced. 

 

5.0 Conclusion 

The two-dimensional stagnation point flow of a viscous incompressible electrically conducting fluid with heat transfer has 

been studied. A numerical solution for the governing equations is obtained which allows the computation of the flow and heat 

transfer characteristics for various values of the Hartmann number M , the suction parameter   , heat generation/absorption 

coefficient    and thermal and mass Grashof numbers  GrcGrt, . The results indicate that increasing the parameter M or 

 ,decreases both the velocity and the thermal boundary layer thickness. On the other hand, the wall shear stress increases 

with increasing magnetic field. The results show that the heat transfer at the wall increases with increasing M ,  , or  . 
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Table 1: Variation of parameters M , Gr , Grc , , and  on the wall shear stress fc ,Nusseltnumber Nu  and Sherwood 

number Sh  

M Gr  Grc    fc
 

Nu  Sh  

1 2 1 -1 -0.5 2.18691 0.30777 0.55363 

1 2 1 0 -0.5 2.77323 0.53321 0.85398 

1 2 1 1 -0.5 2.89664 0.92274 1.19820 

0 2 1 -1 -0.5 2.14315 0.30768 0.55342 

1 2 1 -1 -0.5 2.31686 0.30792 0.55482 

2 2 1 -1 -0.5 2.80188 0.30792 0.56255 

5 2 1 -1 -0.5 5.16311 0.30612 0.59961 

8 2 1 -1 -0.5 7.93985 0.30462 0.62516 

1 2 1 -1 -2 2.04162 0.03123 0.52604 

1 2 1 -1 -1 2.12665 0.05003 0.54202 

1 2 1 -1 0 2.26883 0.07353 0.56953 

1 2 1 -1 1 2.22029 0.53281 0.53281 

1 2 1 -1 2 1.90205 0.77924 0.52477 

1 0 1 -1 -0.5 1.29438 0.31697 0.44754 

1 1 1 -1 -0.5 1.74894 0.31214 0.50513 

1 2 1 -1 -0.5 2.18691 0.30777 0.55363 

1 4 1 -1 -0.5 3.02422 0.3 0.63321 

1 2 0 -1 -0.5 1.80653 0.31079 0.51815 

1 2 0.5 -1 -0.5 1.99939 0.30923 0.5366 

1 2 1 -1 -0.5 2.18691 0.30777 0.55363 

1 2 2 -1 -0.5 2.54865 0.30509 0.58435 

  

Appendix 
Destructive Chemical Reaction: Any type of combustion reaction could be considered "destructive". The type of 

combustion reaction often used in rocket engines. 

Generative (pyrolysis) reactions: reaction that give more easily oxidized, gaseous fuels. 

Thermal Grashof number: The GrashofnumberGrt is a dimensionless number which approximates the ratio of the 

buoyancy to viscous force acting on a fluid.  

Mass Grashof number: is an analogous form of the thermal Grashof number used in cases of natural convection mass 

transfer problems. 

Hartmann number is the ratio of electromagnetic force to the viscous force  

Heat sink is a component that transfers heat generated within a solid material to a fluid medium, such as air or a liquid. 

Heat source is a heat mechanism for heat generation in a system 

Forced convection (flat plate, laminar flow): convectionforcedNu  2

1

Re  

Natural convection (vertical plate, laminar flow): convectionnaturalNu  4

1

Gr  

:1.0Re2 Gr natural convection is negligible. 

:10Re2 Gr forced convection is negligible. 

:10Re1.0 2  Gr forced and natural convection are not negligible. 

The transition to turbulent flow occurs in the range 10
8
< Gr < 10

9
 for natural convection from vertical flat plates.  
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