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Abstract 
 

We develop an unsteady two-dimensional viscous flow model for sub-retinal fluid 

drainage. The sub-retinal fluid and the vitreous are modelled as two distinct viscous 

fluids with a defined interface. An initial disturbance to the interface due to a sink 

located above it is imposed. Asymptotic solutions in time up to
)( 2tO

were obtained. 

The results indicate a rise in the interface due to suction from the drainage needle, 

leading to the compression of the sub-retinal space. The implication of this scenario is 

that the sub-retinal fluid can be completely drained by moving the drainage needle 

progressively closer to the retinal tear. 
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1.0     Introduction 
Retinal detachment refers to the separation of the inner neurosensory retina from the retinal pigment epithelium (RPE), due to 

retinal breaks or traction, thereby creating a space called the sub-retinal space. Fluid from the vitreous and its surroundings 

then flows into the sub-retinal space through the retinal breaks, or by hydrostatic and osmotic processes and active transport 

mechanisms [1]. The accumulation of fluid in the sub-retinal space exerts pressure on the eyeball and this eventually leads to 

the complete pulling away of the inner neurosensory retina from the RPE, and hence blindness, when blood supplies to the 

retina are cut off. The sub-retinal fluid normally accumulates in the sub-retinal space when there is a retinal detachment. This 

fluid is denser than the vitreous, which is the natural fluid that occupies the posterior chamber of the eye. The dynamic 

viscosity of the sub-retinal fluid varies between 1 10.012gcm s  and 1 10.017gcm s  , while the vitreous has dynamic viscosity 

varying between 1 10.012gcm s    and 1 10.028gcm s  in aphakic subjects. The sub-retinal fluid has an average density of 

31011.25kgm , that of the vitreous is 31005.3kgm as reported by Quintyn et al [1]. It should be noted that the densities of 

both fluids vary with duration of retinal detachment, with the fluids getting denser as the duration gets longer. 

The removal of the sub-retinal fluid is central to the successful treatment of retinal detachment through surgery. Our main 

objective in this study is to develop a simple mathematical model for the drainage of the sub-retinal fluid to give room for the 

re-attachment of the retina that gives us greater physical insights into drainage behaviour. Eye surgeons have been using 

various methods to remedy the situation. Some of the most commonly used methods include scleral buckling, chemical and 

gas injection as well as external needle drainage [2-4]. The scleral buckling procedure could lead to rupture of the eyeball in 

eyes with thin sclera. Gas injection on the other hand may require that the patient keeps to a particular head position for up to 

ten days and the gas bubble could be absorbed by the body. External needle drainage method is only effective on newly 

detached retinas, as accumulation of proteins with time prevents proper drainage of the sub-retinal fluid. 

Some mathematical models have been developed for flow in the eye, especially motion due to the saccadic movement of the 

eye [5-6]. Gonzalez and Fitt [7]and Canning et al [8] developed mathematical models for the flow in the anterior chamber of 

the eye due to temperature variation in the eye. In the current study, we attempt to develop a model for the removal of sub-

retinal fluid which normally accumulates in the sub-retinal space following a retinal detachment. Forbes and Hocking [9], 

and Tuck and Vanden-Broeck [10] have developed models for the drainage of fluids in tanks with the sink located below the 

free surface. The current study involves the drainage of fluid through a sink located above the interface. The flow in this case 

is driven by a pressure difference generated by suction due to the infusion needle. 
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2.0 Mathematical Formulations 

 

Fig. 1: Flow Geometry Showing the Retinal Tear Located at a Height H on theInterface h . 

 

We develop a two-dimensional model for sub-retinal fluid drainage. A Cartesian coordinate system is located in the fluid 

such that the x  axis lies along the horizontal bottom corresponding to the retinal `floor', while the z  axis is directed 

vertically. The two fluids, the vitreous and the sub-retinal fluid occupy the plane 0z  , as illustrated in figure 1 above. An 

infusion needle is introduced into the upper fluid, which will be withdrawn due to a pressure gradient created from outside at 

the thumb end of the infusion needle. The sub-retinal fluid and the vitreous are modelled as two distinct fluids with a defined 

interface. The vitreous is modelled as a viscous fluid; hence Stokes' unsteady flow model is employed. The suction from the 

needle therefore serves as a sink and the model is thus that of withdrawal of fluid through a sink located above the fluid 

interface. This is similar to the work of Forbes and Hocking [9]in potential flow. Blake [11], Blake and Chwang [12] and 

Pozrikidis [13] have undertaken similar work in the viscous case. For the two-dimensional unsteady Stokes' flow, we 

consider the field equations   
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where p is the pressure in the flow field,
0p is the atmospheric pressure,  is the surface tension, R  is the radius of 

curvature of the interface,  is the density of the sub-retinal fluid at the interface and  , the two-dimensional delta function 

is a sink or source of strength F . 

We now scale the equations using the scaling parameters  
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 is the Reynolds number, M is the dimensionless strength of the singularity, while L and U are 

the characteristic length and velocity respectively. If Re 1  and 1  , the convective terms can be ignored, and the 

equations in dropping asterisks become   
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 Equation (6) is the forced unsteady Stokes equation which is valid for flows characterised by sudden acceleration or 

deceleration, which is the case in sub-retinal fluid drainage. Scaling (3) similarly, one obtains the dynamic boundary 

condition as  
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Taking the divergence of (6) and using (5), the pressure satisfies the relation  

  0

2 . xx  Mp
        (8) 

  Recalling the equivalent relation for the two-dimensional delta function  
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where 2 2( )r x z    , equation (10) yields the expression for the pressure in the z-direction as  

22

)(

r

zM
p






         (9) 

 

3.0 Small-time Asymptotic Solutions 

In this section, we obtain approximate solutions to equation (8) with the assumptions that the pressure gradient and the flux 

are steady, and that 1t   . An asymptotic solution in t can then be obtained by expanding the velocity ( , )u wu and the 

interface elevation h as  
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where 1t  , 0u and 0w satisfy the steady case of (6) while 1 2, ,..., nu u u   and 1 2, ,..., nw w w all satisfy (6)  . We now 

impose the condition that 0 ( ) 0h x  , which implies a switch-on at 0t  . 

Though the movement of the interface is primarily upwards due to the suction from the needle, the velocity in the x 
direction is substantial, and for small slopes of the interface elevation, the dynamic and kinematic boundary conditions 

become   
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  Now define F and 
f

thus:   

 

 

 

Journal of the Nigerian Association of Mathematical Physics Volume 27 (July, 2014), 149 – 158 



152 

 

An Unsteady Viscous Flow…         Ndam              J of  NAMP 
 

2

2
2

w h
F p

z x

 
   

 
       (15) 

 and  

h h
f u w

t z

 
  
 

.        (16) 

  Expanding  F and  
f

in Taylor series about 0z and evaluating on hz  , one obtains   

0
!0








j

jn

j

j

z

F

j

h

        (17) 

  and   

0
!0








j

jjn

j z

f

j

h

        (18) 

  Substituting F and 
f

into (19) and (20), one obtains the dynamic boundary condition as  
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 and the kinematic condition becomes  
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Using (10 - 13) and evaluating on 0z , we obtain the following sequence of equations from the dynamic boundary 

condition:  
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  From the kinematic condition, we have the sequence of equations 
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 From (21), one obtains the pressure difference as  
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 and from (23 - 25), one obtains the solutions  
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  Thus the expression for the interface elevation is given by   
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Figure 2 shows the progressive movement of the drainage needle closer and closer to the retinal tear, leading to the stretching 

of the surface. The retinal surface begins to deform as the needle gets very close to the tear as can be seen in Figure 2(d). 

Figure 3 on the other shows the elevations of the interface at different times. Observe that the interface begins to deform at a 

height of about 61.0 unit at 42.0t . This is clearly seen in Figure 3(b), (c) and (d). 

 

Figure 2:  Surface Elevation Due to the Vertical Movement of the Drainage Needle for :01.0:0t  (a) 1:1.0:0 (b)

5.0:05.0:0 (c) 4.0:04.0:0 (d) 35.0:035.0:0 . 
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Figure 3:  Surface Elevation with Time for :35.0   (a) 1.0:01.0:0t  (b) 5.0:05.0:0t  

                 (c) 7.0:07.0:0t  (d) 85.0:085.0:0t . 

 

4.0 The Two-Fluid Flow Model 
In this section, we consider a situation in which there is a flow in each region of the flow domain due to the actions of the 

sink through the needle and the sink at the retinal tear. The governing equations become  
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 and the kinematic condition  
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Where , ,s s su w p and , ,v v vu w p are velocity and pressure fields in the sub-retinal and vitreous regions respectively, and
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the retinal tear, and   is as previously defined. Thus we obtain the expression for the pressures in the vitreous and sub-
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4.1  Asymptotic Solution 

An asymptotic solution in time of the form  
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 Using equations (33)-(35), we define 1 2,F F 1 2,F F   and 3F   as  
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 The Taylor's series expansions of (41), (42) and (43), evaluated on z h yield  
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  Using equations (36)-(39), one obtains the following sequence of equations:  
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 where
s vP p p    and the superscripts s and  v denote flow fields in the sub-retinal and vitreous regions respectively. 

Here, 0 0 0 0, , , ,v s v s vu u w w p   and 
sp are obtained from the steady state singularity solutions of equations (31)-(32) as  
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The corresponding sequence of equations resulting from the kinematic boundary condition remains the same as equations 

(23)-(25). 

The expressions for the interface elevations at various orders are then obtained as  
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 and hence the expression for the interface elevation  
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 The first order interface elevation is plotted below for various parameter values and time intervals.  

 Figure    

Figure 4: Surface Elevation for 0.01:t   (a) 0 : 0.1:1   (b) 0.001: 0.1:1   

 (c) 0.002 : 0.1:1    (d) 0.005 : 0.1:1  . 
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5.0 Conclusion 
The forced Stokes' unsteady flow model was analysed using the small-time asymptotic expansion and the approximate 

expressions for the interface evolution were obtained. The interface evolution as depicted on figures 2 and 4 indicates a 

gradual compression of the sub-retinal space as the drainage needle approaches the retinal tear. Figure 3 indicates that the 

interface deforms with time, which is expected when the pressure in the sub-retinal region drops. It is therefore predicted that 

the sub-retinal fluid can be completely drained by moving the drainage needle progressively closer to the retinal tear. 
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