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Abstract 
 

This work is concerned with providing an insight into some global behaviours of 

a tuberculosis mathematical model that included the effect of case detection and 

waning immunity acquired after previous treatment of the disease, using density 

dependent incidence. Using appropriately formulated Lyapunov functions, we show 

that the disease free equilibrium (DFE) of the model is globally asymptotically stable 

whenever a threshold quantity larger than the reproduction number is less than unity. 

It is suggested that this bound on the reproduction number was due to the presence of 

exogenous re-infection which  further suggests the possibility of a backward 

bifurcation (whereby the DFE will co-exists with a stable endemic equilibrium) since 

the reproduction number will have to be less than the calculated threshold for the 

DFE to be globally stable. When the exogenous re-infection terms are removed and 

we assume that treatment confers long term immunity, the endemic equilibrium was 

shown to be globally asymptotically stable whenever it exists. 

 

 

1.0     Introduction 
Tuberculosis (TB), a highly infectious disease, has infected one third of the world's population, leading to between two 

and three million deaths each year [1]. For most individuals infected with TB, the immune system is able to control the 

causative agent, Mycobacterium tuberculosis, but not eliminate it. These individuals are not infectious and suffer no 

symptoms, although they usually test positive on a skin test. However, it is possible that after a latent period of years or 

decades, these individuals may become symptomatic and infectious. There is also a smaller fraction of individuals for whom 

the progression to active TB is much faster. This fast progression is particularly common forindividuals with a compromised 

immune system [2]. 

Several mathematical models for the transmission dynamics of tuberculosis have been formulated and analyzed, in some 

cases rigorously, depending on the concerns of the authors. Castillo-Chavez and Song [3] made a review of some of these 

models. The issue of case detection and the implementation of the direct observation therapy strategy (DOTS) was the aim of 

the study by Okuonghae and Aihie [4] while Okuonghae and Omosigho [5] investigated the effect of some key parameters 

that will help in improving the TB case detection rate. In Okuonghae [6], a novel mathematical model that takes into 

consideration heterogeneity in disease susceptibility and progression was formulated and rigorously analyzed, with results 

showing that a given fraction of those genetically susceptible to TB can form a threshold condition for controlling the spread 

of the disease in a population. 

In most of the formulated models, characterizing the global properties of the systems equilibria using Lyapunov 

functions is still being investigated. This is because establishing global properties of a dynamical system is generally a 

nontrivial problem. The method of using Lyapunov functions provides sufficient conditions for the global stability of the 

disease equilibria; however it is usually not easy to find such a functional [7]. 

In this work, we will provide some global properties of a tuberculosis model that incorporates case detection and waning 

immunity acquire after previous treatment of the disease. The Lyapunov functions used in this paper to demonstrate the 

stability of the endemic equilibrium are of the same form as those used elsewhere [2, 7, 8] and in Okuonghae and 

Korobeinikov [9] to determine the global dynamics of SEIR, SEIS, and SIR models as well as mathematical models that are 

derivatives of the SEIR structures 
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2.0 Model Formulation 
Consider a population with population size      divided into the following epidemiological classes: Susceptible individuals, 

    , Latent (exposed) individuals,     , infectious individuals who are not detected,     , infectious individuals who are 

detected,     , and individuals who are treated and recover from tuberculosis,     . Hence                    
         . 

 

Let us assume that   be the recruitment rate into the susceptible class, which could include immigrants and/or newborns that 

are uninfected. We further assume that   is the per capita natural mortality rate for all individuals in the population. Let    

and    be the transmission rates of the disease from the infectious individuals in the   and   classes, respectively, on the 

susceptible sub-population while    and    are the transmission rates of the disease from the infectious individuals in the   

and  classes, respectively, on the treated sub-population. We assume that treatment induced a modification into the 

transmission process that allows for those treated to be less likely to becoming infected with the disease, so that        , 

       . In this formulation, we also assume that the population is homogeneously mixed, and all people are equally likely 

to be infected by the infectious individuals in a case of contact, and that transmission of the infection occurs with a bilinear 

incidence rate (which follows the law of mass action). 

 

Also, we assume that some of the treated individuals had a form of temporary immunity arising from the treatment received 

but this immunity waned over time and at the rate,  , these individuals revert to susceptible status  Since exogenous re-

infection plays a crucial role in TB dynamics [10, 11, 12], we include this phenomenon into the model and assume that    

and    are the effective transmission rates for the latent class due to exogenous re-infection while   is the rate of progression 

of individuals in the latent state to the infectious classes. 

 

We assume that   is the fraction of infectious cases that are detected and treated (under a direct observation therapy 

strategy(DOTS) programme) while the remaining fraction     of the infectious cases are not detected for treatment (under 

the implementation of DOTS). Let   be the treatment rate of the latent cases while    is the treatment rate of individuals in 

the detected class  . Further, we assume that infectious individuals in the undetected class,  , (other than natural mortality) 

either dies from the disease (at the rate   ) or reverts to the latent state due to self-cure at the rate    [13, 14, 15].  We assume 

that a fraction,  , of the treated persons fully recover while the remaning fraction (     ) did not have full recovery and 

goes back to the latent class. Infectious individuals in the detected class die from the disease at the rate  . We assume that the 

proportion of new infections that leads directly to infectious TB is very small so that we neglect fast progressions to 

infectious TB. 

 

With these assumptions, we now have the following system of non-linear ordinary differential equations: 

 
  

  
                      

  

  
                                                 

  

  
                               

  

  
                           

 
  

  
                          .                                                      (1)                        

 

The model (1) above is similar to the one studied in Okuonghae and Korobeinikov [9]. However, the model (1) was not 

analysed as presented above; a modification of the model (1) led to system that was quantitatively and qualitatively analyzed 

in Okuonghae and Korobeinikov [9]. Also the model in [9] did not consider the effect of loss of immunity that allows a 

treated individual to revert to susceptible status (effect of  ).  

 

3.0 Basic properties of mathematical model 

Under the flow described by (1), the region                   
            

 

 
   can be shown to be positively 

invariant. Further, each solution in    
  approaches   and hence our analysis is restricted to this region. 

The rate of change of   is given by 
  

  
             .                  (2) 
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Thus whenever    
 ⁄ , then

  

  
     Hence since the right hand side of the equality (2) is bounded by    , a standard 

comparison theorem [16] can be used to show that 

              
 

 
        .                        (3) 

 

If       
 

 
, then      

 

 
. Thus  is a positively invariant set under the flow described by (1) so that no solution path 

leaves through any boundary of    Hence it is sufficient to consider the dynamics of the model (1) in    In this region, the 

model can be considered as been epidemiologically and mathematically well-posed [17.] 

The system (1) has a disease-free equilibrium (DFE), given by 

                     
 

 
          

Using the next generation operator method [18] on (1), we can calculate the effective reproduction number. Using the 

notations in van den Driessche and Watmough [18], the matrices F and V, for the new infection terms and the remaining 

transfer terms, respectively, are given by 

 

                         F =   (
   

 

 
  

 

 

   
   

)and V = (

        
         

     
) 

 

Where                             . 

Hence the effective reproduction number (obtained from the spectral radius of the matrix    ) is given by 

    
 

 

                

        (                   )  
 

The threshold quantity   represents the average number of secondary cases generated by a typical infected individual in a 

susceptible population in the presence of treatment.  

The following result follows from Theorem 2 in [18]. 

Lemma 1. The DFE of the model (1) is locally asymptotically stable if     , and unstable if       
The epidemiological implication of Lemma 1 is that when    is less than unity, a small influx of infected individuals into the 

community would not generate large outbreaks, and the disease dies out in time. 

 

4.0 Global stability of    when     . 
We claim the following: 

Theorem 1. The DFE of the model (1) is globally asymptotically stable whenever         where 

       
   

       
 

   

       
  

Proof:  Consider the Lyapunov function 

                               
Recalling  that       , the Lyapunov derivative becomes 

  

  
 

  

  
 

  

 

  

  
 

  

  
 

  

  
 

  

  
 

  

  
 

Substituting the right hand side of the derivatives in the model (1), the Lyapunov derivative then becomes 

  

  
                   

  

 
                    

                                                 

                                                        

                             
After several calculations, we then have that 
  

  
   (  

  

 
 

 

  )    
  

 
       (

   

       
  )   (

   

       
  )   . 

Since the arithmetic mean is greater than or equal to the geometric mean, the function   
  

 
 

 

   is negative. Hence we see 

that 
  

  
   

if     
   

       
  and    

   

       
  . 
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Now define              Since each of    and    are not exactly    and are a bit larger than  , then we conclude 

that  
  

  
   

whenever       , with 
  

  
   only at the DFE where          . 

It follows from the LaSalle’s Invariance Principle [19], that  

(                   )            as    . 

 

We observe that    is bounded above by the max of    and   . Hence we conjecture that the global stability of the DFE is 

restricted by these parametersdue to the presence of exogenous re-infection and the effect of   (the parameter that captures 

waning immunity acquired from previous treatment). 

Now consider the model (1) where   and     are set to zero to exclude the effect of exogenous re-infection. Also we set 

    and assume long term immunity to re-infection after previous treatment (       ). 

This then reduces the model (1) to  
  

  
                   

  

  
                               

  

  
                     

  

  
                 

 
  

  
            .                 (4) 

The model (4) can be considered in the region                   
            

 

 
 and we can show that this 

region is positively invariant using the approach demonstrated for the region discussed above. It is easy to show (using a 

suitably chosen Lyapunov function) that the DFE of the modified model (4) is globally asymptotically stable in  whenever 

the associated reproduction number is less than 1. 

 

We now show that the endemic equilibrium of the model (4) is globally asymptotically stable in   whenever it exists. Of 

course the classic condition for the existence of the endemic equilibrium is that the associated reproduction number should be 

greater than unity and it is easy to show that the endemic equilibrium of the model (4) exists and is unique when the 

reproduction number is greater than unity. 

We now claim the following: 

 

Theorem 2. The endemic equilibrium of the system (4) is globally asymptotically stable. 
Proof: Let the endemic equilibrium be written as 

                    

where at least one of the infected classes is not zero. 

Now consider the non-linear Lyapunov function 

                                                   

where   
           

           
  and   

            

           . 

Taking the derivative of    with respect to time, we have 
  

  
 

  

  
(  

  

 
)  

  

  
(  

  

 
)   

  

  
(  

  

 
)   

  

  
(  

  

 
) 

Substituting the expressions for the derivatives in (4) into the derivative of the Lyapunov function, we have 
  

  
                 (  

  

 
)                                (  

  

 
) 

                      (  
  

 
)                   (  

  

 
).            (5) 

From the model (4), at steady state, we can  see that, 

     
       

       ,  

   
       

       
      

           
 , 

                   
 ,  

               
        (6) 

Journal of the Nigerian Association of Mathematical Physics Volume 27 (July, 2014), 137 – 142 



141 

 

Some Global Properties of…         Okuonghae        J of  NAMP 
 

Substituting the expressions in (6) into (5), and after several tedious calculations, we now have 

 
  

  
    (  

 

  
 

  

 
)     

   (  
    

     
 

  

 
 

   

   
)     

   (  
    

     
 

  

 
 

   

   
)      

 (  
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 (  

   

   
 

   

   ). 

Finally, since the arithmetic mean exceeds the geometric mean, the following inequalities hold: 

 

(  
 

   
  

 
)   ,(  

    

     
 

  

 
 

   

   )   , (  
    

     
 

  

 
 

   

   )       

(  
   

   
 

   

   )   ,(  
   

   
 

   

   )   . 

Thus 
  

  
   for            . The equality 

  

  
   holds only on the plane      

 

  
 

 

   
 

  . 

 

5.0 Conclusion 

This work examines some global properties of a tuberculosis mathematical model that considers the effect of case detection 

and waning immunity on the dynamics of TB. It was observed from the analysis that the DFE is globally asymptotically 

stable, in the presence of exogenous re-infection and waning immunity after previous treatment, only when the associated 

reproduction number is less than a larger threshold quantity that was less than one. Hence the effective reproduction number 

was bounded above by that quantity. Therefore having the reproduction number to be less than one is therefore no longer 

sufficient in driving the epidemic to zero; the effective reproduction number has to be strictly less than the threshold quantity 

bounding it. 

 

Exogenous re-infection plays a role in hampering the use of the reproduction number for TB control, especially with disease 

elimination in mind. This is especially so as it induces the phenomenon of backward bifurcation whereby the DFE co-exists 

with another stable endemic equilibrium when the associated reproduction number is less than unity. We observe that when 

the exogenous re-infection terms are set to zero and long term immunity was assumed, it is then possible to demonstrate that 

the DFE of the modified mathematical model will be globally asymptotically stable whenever the associated reproduction 

number is less than unity while the endemic equilibrium was shown to be globally asymptotically stable whenever it exists 

and the associated reproduction number is greater than unity.  

 

A more theoretical result to further demonstrate the effect of exogenous re-infection on the dynamics of TB with regards to 

inducing a backward bifurcation can be shown using the Center Manifold Theorem [3, 20]. However we have shown from 

this work that having the associated reproduction number bounded by a threshold quantity less than unity could suggests the 

effect of certain key parameters on the global behaviour of the DFE and such parameters could cause the system to undergo a 

backward bifurcation. 
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