
133 

 

Journal of the Nigerian Association of Mathematical Physics 

Volume27, (July, 2014), pp 133 – 136 

© J. of NAMP 

 

A Note on the Global Stability of Equilibria of a Tuberculosis  

Mathematical Model with Re-treatment 
 

Daniel Okuonghae 
 

Department of Mathematics,  

University of Benin, Benin City, Edo State. 
 

Abstract 
 

The spread of tuberculosis is studied through a mathematical model that 

includes re-treatment of previously failed treatments. For the model, Lyapunov 

functions are used to show that when the basic reproduction number is less than or 

equal to one, the disease-free equilibrium is globally asymptotically stable. In a 

special case where disease-induced death is insignificant and where treatments (and 

re-treatments) were successful, when the associated reproduction number is greater 

than one, the endemic equilibrium is globally asymptotically stable. 

 

 

1.0     Introduction 
Tuberculosis (TB) has continued to be a health challenge to millions world over, a third of the world's population is infected 

and about two to three million deaths are recorded each year, especially in developing countries [1]. TB is caused by the 

bacteria agent, Mycobacterium tuberculosis. Individuals infected are initially not infectious and suffer no symptoms even 

when they test positive on a skin test. In about 10% of all cases, infected individuals progresses from the latent period (which 

could last several years or decades) to the infectious, symptomatic stage of the disease[1,2]. 

 

A global control strategy adopted by the WHO to help reduce the number of active TB cases as well as promote proper 

treatment of patients with tuberculosis is the Direct Observation Therapy Strategy (DOTS). Non-adherence to treatment of 

TB results in resurgence of resistance strains, making it even more difficult to cure. DOTS have evolved into a strategy that 

makes it compulsory for patients to complete their treatment. The DOTS program uses a nurse or surrogate who delivers and 

supervises the patients taking all the doses of their drugs rather than relying on the patients to take the drugs on their own [3]. 

 

In Okuonghae [4], a mathematical model was presented that investigate the effect of re-treatment (after a previous treatment 

failed) on the dynamics of the disease in a population. The model includes treatment strategies that employs both DOTS and 

non-DOTS methods. While the work includes global analysis for the disease-free equilibrium (DFE) for the sub-models 

carved out of the main model (as well as include local stability analysis of the endemic equilibrium), the work in Okuonghae 

[4] did not consider the global properties of the DFE of the complete model and any global study of the endemic equilibrium, 

even for special cases.  

 

In this work, the global dynamics of the complete model in Okuonghae [4] (the DFE and a special case of the endemic 

equilibrium) are resolved through the use of Lyapunov functions. Establishing global properties of a dynamical system is 

generally not a trivial problem. The most successful approach to the problem is the direct Lyapunov method [5]. However, 

the method requires an auxiliary function with specific properties, a Lyapunov function, which is not easy to find [6]. 

 

The Lyapunov function used in this paper to demonstrate the stability of theendemic equilibria(in the special case) is of the 

Goh-Volterra type as those used in Gumel [7] and Melesse and Gumel [8]. A similar Lyapunov function was used in Goh [9] 

and Takeuchi [10] to study Lotka-Volterra systems for predator-prey interactions. 
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2.0 DOTS Model with Re-treatment 

Consider a population with population size ( )N t  divided into subpopulations based on epidemiological status; individuals 

are classified as susceptible, ( )S t ;latent (exposed), ( )E t ; infectious, ( )I t ;first treatment 1( )T t ;  re-treated, 2 ( )T t . 

Let   be the recruitment rate into the susceptible class, which could include immigrants and/or newborns that are uninfected 

and assume that   is the per capita natural mortality rate for all individuals in the population. Let    and    be the 

transmission rates of the disease amongst the susceptible and treated individuals, respectively. We assume that treatment 

induced a modification into the transmission process that allows for those treated to be less likely to becoming infected with 

the disease, so that        .Assume that the rate at which latent individuals progress to the active TB case is k  or gets 

treated at the rate 0r . Also, let q be the fraction of active cases treated under DOTS while 1n  is the fraction of these that 

were successfully treated while p = 1 - qis the fraction of active cases treated under non-DOTS program while 2n  is the 

fraction of these that were successfully treated. Assume further that 1r  is the treatment rate for the infectious individuals, mis 

the fraction of the retreated cases that were successful and d be the disease-induced death rate.  In this formulation, we 

assumed that exogenous re-infection is negligible and most infections in the population do not progress quickly to the 

infectious stage (hence the need to neglect fast progression in the dynamics). 

With these assumptions, we have the following system of non-linear ordinary differential equations: 
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where
1 2 1 20 1,0 1,0 1, 1 ,  n n m p q and N S E I T T             . 

The behaviour of the system (1) was studied in Okuonghae [4], but the global stability of the disease-free and endemic 

equilibria was not treated; we resolve them here. 

Let us set 
1 2     whereby the susceptible and the treated have an equal transmission amongst them. 

Using the next generation matrix approach [11], the basic reproduction number for system (1) is 
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The threshold quantity 0R represents the average number of secondary cases generated by a typical infected individual in a 

susceptible population in the presence of treatment.  

Under the flow described by (1), the region                     
              

 

 
 is positively invariant.  

For 0 1R  , the only equilibrium is the disease-free equilibrium (DFE) 0 ( / ,0,0,0,0)Q    in    For  0 1R  , 0Q is 

present as is an additional equilibrium * * * * * *

1 2( , , , , )Q S E I T T  in   with * * * * *

1 2, , , , 0S E I T T  . Any solution which has an initial 

condition in    
 for which * * * *

1 2E I T T   is positive immediately moves into the interior of the positive orthant. On the 

other hand, if the initial condition in    
 satisfies * * * *

1 2 0E I T T    , then the solution limits to 0Q  

 

3.0 Global stability of 0Q for 0 1R   

We claim the following: 

Theorem 1. The disease free equilibrium 0Q , of the model (1), is globally asymptotically stable on    
  if 0 1R  . 

Proof: Consider the linear Lyapunov function 
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Differentiating U with respect to time (where dot indicates differentiation with respect to time) gives, 
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Clearly 0U  when 0 1R  with equality only at 0Q  i.e. when 0I  . Hence by the LaSalle’s Invariance Principle [12],  

(                     )            as    . 

So the limit set of each solution is contained in the largest invariant set for which 0I  , this being the singleton 
0{ }Q . 

4.0 Global Stability of 
*Q For Special Case. 

Consider the model (1) with 2 20,   0, 1d m n    . In this special case, we assume that the population has a small 

proportion of disease-induced deaths and that treatments (and re-treatments of failed treatments) are successful with the 

treated classes now removed from the transmission process by reason of, say, awareness or some form of ‘isolation’.  

Now we observe that with 0d  , N
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so that the force of infection now becomes 

This then reduces model (1) to  
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and the associated reproduction number now becomes 
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Further, let  

                                 . 
We claim the following: 

Theorem 2. The endemic equilibrium of the model (2) is globally asymptotically stable in      whenever 
* * * * *

1 2, , , , 0S E I T T   (which holds when
0 1dR  ) and

2 20,   0, 1d m n    . 

Proof: Consider the following non-linear Lyapunov function of the Goh-Volterra type 
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Taking the derivative ofV with respect to time (where dot represents differentiating with respect to time), we have 
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Substituting the expressions for the derivatives in (2) into the derivative of the Lyapunov function, we now have 
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Observe from (2) that, at steady state, 
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Substituting the expressions in (4) into (3), and after several algebraic manipulations, we have 
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Finally, since the arithmetic mean exceeds the geometric mean, the following inequalities hold: 
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Thus 0V  for 
* * * * *

1 2, , , , 0S E I T T   (which holds when
0 1dR  ). Hence V is a Lyapunov function in   and it follows 

by the LaSalle’s Invariance Principle [12], that every solution to the equations of the model (2), and initial conditions in 

     approaches the associated endemic equilibrium 
*Q , of the model as t  .  

 

5.0 Conclusion 
The global stability of the disease-free equilibrium and a special case of the endemic equilibrium for system (1) has now been 

resolved. If 0 1R  , then each solution limits to the disease-free equilibrium; the disease dies out of the population. If 

0 1dR  , then there is a unique endemic equilibrium (for the special case where disease-induced death is insignificant) 

which is globally asymptotically stable among all states for which the disease is present; if disease is present in the 

population, then it will persist. 

The use of Lyapunov functions in proving the global stability of dynamical systems is generally not a trivial exercise. We 

leave it as future work to examine the global stability of the endemic equilibrium for the complete system (1); applying the 

technique outlined above to deal with mathematical models with frequency dependent incidence (as used in model (1)) is 

generally challenging. 
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