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Abstract 
 

In this paper, we formulate a Continuous Time Markov Chain (CTMC) model 

with two types of treatment rates: (i) Constant treatment rate (ii) simple linear 

treatment rate. The model has been driven from the standard susceptible-infected-

removed (SIR) epidemic model. Numerical simulations are used to assess the effect of 

variation in the treatment term relative to the constant recruitment rate A.  It is shown 

that with     or     less than unity, whether or not the recruitment rate is greater 

than or equal to the treatment term, the disease sample paths approach a disease free 

equilibrium, but for the basic reproduction number (    or     ) greater than unity, 

the sample paths approach an endemic equilibrium state. While the simple linear 

treatment rate predicts equal decay rate in all cases, the constant treatment rate shows 

the deterministic paths have higher disease prevalence at the peak of the outbreak and 

the stochastic realizations a faster decay rate. Our results further demonstrate the 

effects of treatment in predicting disease prevalence and decay rate. 

 

Keywords: Basic reproduction number; deterministic; disease equilibrium; Markov chain; Continuous Time 

 Markov Chain. 

 

1.0     Introduction 
Epidemics have many a time had a great impact on population sizes and historical events as was seen in the historic 

bubonic plague [1]hence understanding of the dynamics of its treatment is critical to human survival and happiness. 

According to Daleh and Gani [2], the modeling of infectious diseases is a tool which has been used to study the mechanism 

by which diseases spread, to predict future course of an outbreak and to evaluate strategies to curtail or contain the spread.  

Although the foundation of ecological and epidemiological modeling has been largely deterministic, a major shortcoming of 

deterministic models is their inability to include an element of uncertainty or noise. Since human disease transmission is 

inherently stochastic due to random nature of person to person contact [3] and notably too, since human population 

distribution is subject to a number of disturbances which are also random [4, 5], the need to incorporate stochasticity in 

disease modeling becomes imperative. In this view a growing body of research suggests that demographic stochastic effects 

due to the randomness in nature affect this deterministic modeling ideal [6 – 12]. 

Allen and Burgin [13] presented a comparison of the deterministic and stochastic SIS and SIR models in discrete time 

and showed that disease extinction and persistence depends on the basic reproduction number in the deterministic model and 

that ultimate disease extinction was certain in stochastic counterpart regardless of the value of the basic reproduction number 

R0. 

Allen and Kirupaharan [14] showed that the deterministic and stochastic models differ considerably in predicting 

coexistence of two pathogens.For more review work on stochastic modeling and models see [15]. 

Generally SIR disease model deals with an infection where recovered individuals are completely immune [16]. 

According to Hethcote [17] the SIR model is classified into two: (i) the classic epidemic type – the one without vital 

dynamicsand (ii) The classic endemic type– one with vital dynamics. The stochastic SIR model is a derivative of the 

deterministic model. In this paper we use an SIR model of the classic endemic type, formulate the stochastic version of the 

deterministic model following the method given in Allen [18, 5]and investigate the effects of varied treatment on the 

stochastic model dynamics. 

Treatment programs are common methods used in disease eradication from a given population [19],since treatment is a 

very important and effective method in preventing and controlling the spread of various infectious diseases. According to 

Anderson and May [20], in classical epidemic models, the treatment rate of the infectives is assumed to be proportional to the 

number of the infected individuals. A case of the SARS outbreaks in 2003, the spontaneous increasing of SARS beyond what 

has ever been seen created a paradigm shift and forced the government of China to create the first and only SARS hospital, 

Beijing Xiaotangshan Hospital, to treat the large number of SARS patients [21].  
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This experience was an eye opener to researchers to the potency of treatment both from the modeling and analyzing 

point of view. Xu et al [22] formulated a CTMC model for an influenza epidemic with drug resistance and studied the effect 

of different treatment strategies through numerical simulations. Billings et al. [23] quantified how treatment enhances the 

extinction of epidemics in a stochastic SIS model. Hussaini and Winter [24] considered a susceptible-infected-removed (SIR) 

epidemic model with non smooth treatment rates and analysed the travelling wave solutions. 

In this paper, we adopt two forms of treatment: simple linear treatment and constant treatment rate using an SIR model 

as in [24] with a modified treatment function. Following the procedure postulated in [18, 5], we formulate the Stochastic 

models from the deterministic model. The numerical results from the stochastic model using the CTMC formulation was used 

to compare the effect of variation in the respective treatment rates relative to the constant recruitment rate. Formulations of 

the other stochastic models: the SDE and the DTMC were done in the appendix. The deterministic model is used to compute 

the basic reproduction number under constant and simple linear treatment rates respectively.  

The rest of this paper is organized in the following way: In section twowe present the basic deterministic model and the 

assumptions that will be used in our analysis. In section three we state the basic reproduction numbers for the constant 

treatment rate and for the simple linear treatment case. In section four, we formulate the stochastic model, the CTMC from 

the basic deterministic model and carry out numerical simulations in five. In the last section we give a summary of our 

results. 

 

2.0    Deterministic Model  
The deterministic model (1) is a system of ordinary differential equation andrepresents an SIR model in the continuous 

case with a treatment rates: (i) constant and (ii) simple linear rate as given in (2). This deterministic model forms the basis for 

the formulation of the CTMC model (and the SDE and the DTMC, in the appendix) which incorporates variability due to 

death, birth, recovery, infection or transmission process. 
  

  
  = A – dS – 𝛌SI 

  

  
  = 𝛌SI – dI – T(I)             (1) 

  

  
  = T(I) – dR 

Where (i) T(I) = r and (ii) T(I) = rI                                                                      (2)  

for the constant treatment rate and simple linear treatment rates respectively. 

Let S(t) be the number of susceptible individuals, I(t) the number of infective individuals,and R(t) the number of 

removed or recovered individuals at time t.The constant A is the recruitment rate of the population,d the natural death rate of 

the population and  𝛌the force of infection associated withthe transmission of the disease from susceptibles to infecteds, 

T(I)is the removal rate of infective individualsdue to the treatment of infectives and takes into account the limited capacity of 

treatment facilities. 

The dynamics of model (1) depends on the basic reproduction number R0. Since the first two equations of model (1) is 

independent of the third, it suffices to consider the reduced model (3) in the analysis.  
  

  
  = A – dS – 𝛌SI 

  

  
  = 𝛌SI – dI – T(I)                                                                                          (3) 

 

3.0    Basic Reproduction number (R0) 
According to Keeling and Rohani[25], R0 is the mean number of secondary infections produced when one infected 

individual is introduced into a host population where everyone is susceptible.The basic reproduction number is very useful in 

predicting whether or not there will be an outbreak in stochastic models as well, an instance is seen in the simple CTMC SIR 

epidemic model with I(0) initial infected individuals, where it was shown there is no outbreak with probability (
 

  
  (    d an 

outbreak with the probability 1 - (
 

  
  (  [22, 18,15]. The basic reproduction number R0 of model (1) is computedat the 

constant and simple linear treatment rates.Now for the simple linear treatment rate, that is for T(I) = rI, following [21].The 

basic reproduction number is 

R01=
 

 
(

 

   
),        (4) 

But for the constant treatment rate, where T(I) = r,the basic reproduction numberis given as: 

 R02 = 𝛌A/d
2            

(5)
 

This thresholdsdetermine whether a disease invades a population or not but the knowledge of which is not sufficient to 

determine the long term disease dynamics [26, 27]
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4.0  Stochastic Models 
There are three main stochastic models commonly used in population biology. Discrete-time Markov chain model, 

continuous-time Markov chain and stochastic differential equation model. These models take into account the random nature 

of the individual birth and death process, which we call demographic variability [28]. We show the formulations of the 

stochastic models for the continuous time markov chain model for the model (1). The formulation is done following the 

method in Allen [18, 5] while incorporating the respective treatment rates: the constant and linear treatment rates. 

 

4.1  Continuous Time Markov Chain (CTMC) Model  
The CTMC model is defined on a continuous time scale, t        but the state variables are discrete, i.e., S(t) , I(t) , 

R(t)   { 0,1, 2, …,N). Under the assumption that    is sufficiently small and that at most one change occurs during the time 

interval   .The process of formulation is the same with that of DTMC (see Appendix) except that o(    is added to each of 

the infinitesimal transition probabilities.The o(    symbol represents a negligible remainder term in the sense that if we 

divide the term by   , then the resulting value tends to zero as    tends to zero[29].The CTMC model is bivariate and R(t) = 

N – S (t) – I (t). For this bivariate process a joint probability function is associated with each pair of random variables ( S(t), 

I(t)) , P(s,i)(t) = Prob{S(t), I(t)  =(s, i)}. From the deterministic model (1) the infinitesimal transition probabilities associated 

with the changes in states are given: 

   P(s+k,i+j)(s,i)     = 

{
 
 
 

 
 
 

       (   (     (     

                                                            (        (     

        (         (    

        (     (     

                                                     (       (     

  (                                (     (    

                                                 

               (6) 

The transition probabilities (6) define completely the CTMC model for the simple linear treatment rate. 

P(s+k,i+j)(s,i)     = prob{ (       (       (    (   (       satisfies the system of forward Kolmogorov differential 

equation from the infinitesimal transition probabilities: 
  (    

  
= P(s +1,i-1)𝛌(s+1)(i-1) + P(s, i+1)r(i+1) +P(s+1,i)d(s+1) + P(s,i+1)d(i+1) + P(s -1, i)A – P(s,i)[𝛌si + ds+ di+ri+A] 

,s,i  {1,2,3,…,N}         (7) 

In [29], the differential equation forms the limiting value of DTMC (see the appendix) when    0 and can be written in 

matrix form as  

dP/dt = Qp,   (0) = 1,        (8) 

the matrix Q is called the infinitesimal generator matrix formulated with respect to the infections class and has the form:  

Q =

(

 
 
 
 
 
 

                                   (      (                                                                                                

            (   (   (      (  )            (      (                                                          

                 (                        (   (   (      (  )              (      (                       

                                                                              (     (   (   (      (  )            

                                                                                                                                                                                

                                                                                                                        (      (    

                                                                                                                                        (      (    )

 
 
 
 
 
 

          (9) 

Where the transition matrix P(  )of the DTMC model and the generator matrix Q are related as follows: Q =        (    
  /   [18]. 

 

4.2 For constant treatment term: T(I) = r 
Following the same process as above the results for the transitional probabilities and the forward Kolmogorov’s equation for 

the CTMC model with a constant treatment termis given in (10) and (11) as: 

P(s+k,i+j)(s,i)     = 

{
 
 
 

 
 
 

       (   (     (     

                                     (     (     

                                       (     (     

                                    (        (     

                                      (       (    

  (                        (     (    

                                                 

  (10) 
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From where we get a system of forward Kolmogorov differential equation which has the form 
  (    

  
  = P(s +1,i-1)𝛌(s+1)(s-1) + P(s, i+1)r + P(s-1, i)A +P(s+1, i)d(s+1)+P(s, i - 1)d(I-1)– P(s,i)[𝛌si +A+ds+di+ r](s, i)   {1,2,3,…,N}             

          (11) 

For another constant treatment case: where T(I) = 0,  the formulation gives the result (12) given as: 

P(s+k,i+j)(s,i)     = 

{
 
 
 

 
 
 

       (   (     (     

                                     (     (     

                                                     (     (     

                                      (       (    

  (                             (     (    

                                                 

       (12) 

From where we get a system of forward Kolmogorov differential equation which has the form 
  (    

  
  = P(s +1,i-1)𝛌(s+1)(i-1) + P(s-1, i)A +P(s+1, i)d(s+1)+P(s, i - 1)d(i-1)– P(s,i)[𝛌si +A+ds+di]                                                          

with  s, i    {1,2,3,…,N}         (13) 

 

5.0 Numerical simulations 
For the numerical simulations, we present examples with treatment rates reflecting: constant treatment ( T(I) = r ) and 

simple linear treatment rates (T(I) = rI); with variations in r relative to the recruitment rate A and  the basic reproduction 

numbers at each of the points. Given the recruitment rate A, the values of r chosen reflect the cases for which r >A, r <A and 

r = A.CasesIIa, IIb and IIcare simple linear treatment correspondents of Cases Ia, Ib and Ic respectively which has a constant 

treatment rate.A sample path for the stochastic formulation is compared with the deterministic path in all the figures at the 

respective values of r and A. The initial values were taken for I(0) = 1.Emergence, persistence and extinction behavior of the 

models were observed with respect to the different treatment terms with their respective reproduction numbers. The basic 

parameter values for the various cases are given in Table 1. 

CASE I: Constant treatment 

Cases Ia, Ib and Ic show the graphs of the deterministic solution (smooth curve) and a sample path of a stochastic model 

(non smooth curve) for a constant treatment with parameter values as shown in Table 1 and the  population size 50 graphed 

under 300 days interval. In Fig.1, with  r> A and the  basic reproduction number less than unity, the sample paths approach a 

disease free equilibrium and eventual disease extinction. The outbreak is at its peak within 30 days with the deterministic 

path projecting about 38 infecteds while the stochastic path predicts close to 33 infecteds at the peak. The stochastic path 

decays faster than the deterministic in all the cases with constant treatment. In Fig.2, with the treatment term less than the 

recruitment rate and the basic reproduction number more than unity, the sample paths approach endemic equilibrium with the 

deterministic at 22 infecteds while the stochastic stays at about 5 infecteds in case  per population of 50 people. In Fig.3 the 

treatment rate equals the recruitment rate, and the basic reproduction number is less than unity. The sample realizations tend 

to a disease free equilibrium. 

 

Table 1; Parameter values used in the simulations for the cases. All other parameters are the same, variations were only done 

for the recruitment rate A, and r in all the cases. 

   d A r R01 1/ R01 R02 1/ R02 

case Ia 0.0100 0.0167 0.0010 0.0.005   0.0360  27.78 

Case Ib 0.0100 0.0167 0.5000 0.1   18 0.0556 

Case Ic 0.0100 0.0167 0.0050 0.005   0.18 5.56 

CaseIIa 0.0100 0.0167 0.0010 0.005 0.0277 36.111   

CaseIIb 0.0100 0.0167 0.5000 0.1 2.5714 0.3889   

CaseIIc 0.0100 0.0167 0.0050 0.0050 0.1385 7.222   
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Fig. 1A sample path of CTMC model (non smooth curve) with the deterministic path (the smooth curve) with 

parameter valuesA = 0.001, r = 0.00500, R02 = 0.0360, R01 = 0.0277 where case 1a represents the constant treatment 

case and case IIa, the simple linear treatment counterpart, with r > A. 

 

 
 

Figure 2. The deterministic solution (smooth curve) and the corresponding stochastic realization (non smooth 

curve)withr<A  and values: r = 0.1,  A = 0.5, R02= 18,  R01= 2.5714 with other parameter values as shown in Table 1, 

case 1b is the constant treatment case and IIb is the simple linear treatment counterpart. 

 

Case Ic: T(I) = r  

 

  
  

Figure 3:A graph of the stochastic and deterministic realization for r = A whereA = 0.005, r = 0.005, R02 =0.18, R01 

=0.1385 with other parameter values as shown in Table 1, case Ic is the constant treatment case and IIc is the simple 

linear treatment counterpart 
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CASE II: Simple Linear Treatment Rate 

A sample path or stochastic realization (non smooth curve) is graphed for the CTMC stochastic model and compared to 

the solution of the deterministic model for the case of simple linear treatment rate T(I) = rI.CasesIIa, IIb, and IIc are the 

simple linear treatment rates correspondents of CasesIa, Ib and Ic respectively. Unlike in Case Ia, Case IIa (in Fig. 1) shows 

an equal decay rate in the stochastic and deterministic realizations though still the paths tend to disease free equilibrium but 

the incidence is lower than in Case Ia. In Case IIb, in Fig.2 an endemic equilibrium is reached at about 3 persons per 

population of 50 in contrast to the result of Case Ib which is endemic at a population of 22 and 5 for deterministic and 

stochastic sample paths respectively showing there is more agreement in the general stochastic results than the deterministic 

results.CaseIIc the outbreak attain its peak within about 25 days of emergence and tends to disease free equilibrium later. 

Generally it is observed that with simple linear treatment rate the stochastic and deterministic results coincide, but with the 

constant treatment rate there is an unequal decay rates in the paths. 

 

6.0 Discussion 
We presented in brief, a review of the literature on stochastic modeling and the impact of treatment function on disease 

control. We formulated a Continuous Time Markov Chain (CTMC) SIR model from the deterministic modelwith respect to 

constant and linear treatment rates respectively. The basic reproduction number of the model relative to this two treatment 

types is explored. Since the model under study assumes a constant recruitment rate A,the effect of variation in the treatment 

term r relative to the constant recruitment rate is investigated numerically. With the basic reproduction number less than 

unity, whether or not the recruitment rate is greater than the treatment rate, it is observed that the disease sample paths 

approach a disease free equilibrium position. More so, whenever the basic reproduction number is greater than unity, the 

sample paths tendto an endemic equilibrium position. In addition, disease prevalence in thestochastic path is observed to be 

generally lower compared to the deterministic path. Generally stochastic and deterministic results are seen to agree in the 

simple linear treatment case which is not so for the constant treatment case. Our results further emphasize the importance of 

understanding treatment in the context of disease modeling and control. These results have far reaching implications for 

control strategies aiming at total disease eradication from the population. Of course, if an optimal result is sought, which 

generally is the case, an effective treatment type suitable to the prevailing condition must be adopted. The target for health 

workers would be on any means to decrease or regulate the recruitment rate into the population so much so as to ensure that 

the treatment term is raised enough to make the basic reproduction number less than unity for effective disease control. 

 

7.0 Conclusion 
These results help to bridge the gap between deterministicand stochastic model analysis for the study of infectious diseases in 

relation to treatment. There remains much more to be done though, but the above mathematical formulations and insights 

from computer simulations may serve as a useful basis for further research. 

 

Appendix 

A.1. DTMC model  
In the DTMC model the population size and time are both discrete valued. If S(t), I(t), and R(t) denote discrete random 

variables for the number of susceptible, infected and immune or recovered individuals at time t, respectively then S(t), I(t),  

R(t) and t             .The DTMC model is a bivariate process because the susceptible S(t)and the infectious  I(t) class 

are independent random variables while the recovered class, R(t), is the dependent random variable, given by;R (t) = N - S (t) 

– I (t). 

This bivariate process {S (t), I (t)    
  has a joint probability function given by; 

 P(s; i) (t) = Prob {S(t) = s, I(t) = i} where s, i= 0, 1, 2, . . .,N. According to Allen [30] the bivariate process defined above 

has the Markov property and is time homogeneous. If t is sufficiently small such that at most one change in state occurs 

during the time interval  t, then the transition probabilities:P(s+k, i+j),(s,i )( t) = Prob {( S,   I)   = (k, j) | S(t), I (t) = (s, i)} 

where   = S (t+  t) - S (t) represents the change in population size of susceptible from time t to time t +  t. Hence  for 

the simple linear treatment rate, where T(I) = rI ,the transition probability formulated with respect to the transitions at the 

various states is given by: 

P(s+k,i+j),(s,i)(  ) =

{
 
 
 
 

 
 
 
 

                                                 (     (     

                                                       (     (     

                                                              (         (    

    (     (     

                                                                (      (     

        (                                    (     (    

                                                                                           

(14) 
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 where    is chosen sufficiently small such that each of the transition probabilities lie within the interval [0,1]. Applying the 

Markov property, the difference equation satisfied by the probability P(s, i) (t+  t) can be expressed in terms of the transition 

probabilities as; 

P(s,i) (t +   ) = P(s+1,i-1)(t)𝛌(s + 1) (i - 1)    + P(s, i +1) (t) r(i + 1)   + P(s -1,i )(t)A  +P(s, i +1) (t) d(i + 1)   +P(s+1, i ) (t) d(s + 1)  + 

P(s, i )(1 – (𝛌         + A+ ri)  )  for s, i  {1,2,3,…,N}                                                                                                       

            (15) 

The difference equations project forward in time andcan be expressed in matrix form as 

A.1  P(t +  ) = Qp(t) ,    
(0) = 1,                                                                         (16) 

where matrix Q = pij(    is the transition matrix . We set p to be the row vector of the N+ 1 probability. In this vector 

notation, the Kolmogorov forward equation becomes
   

  
   ,where the matrix Q is  

(

 
 
 
 
 
 

                                   (      (                                                                                               

          (   (   (      (  )            (      (                                                                  

                 (                         (   (   (      (  )              (      (                          

                                                                              (      (   (   (      (  )          

                                                                                                                                                                                

                                                                                                                             (      (    

                                                                                                                                        (      (    )

 
 
 
 
 
 

 (17) 

To ensure that Q is a stochastic matrix, in the sense that Q is nonnegative and the column elements sum to one, it is assumed 

thatmax {     + (           1. 

It is worthy of note to state that the state (N, 0) is an absorbing state; that is a state in which no other state can be reached (P 

(N, 0) (N, 0)(    =1) and all other states are transient[18, 5, 30] 

 

A.2. SDEmodel 
Stochastic differential equations take into account variability in the birth, death, and transmission rates of each of the 

populations. Here both time and state are continuous variables.  Ito’s SDEs are derived from model (1) assuming that changes 

in random variables, over short time steps are normally- distributed and that the random variability is only due to births, 

deaths, and migrations, i.e. demographic variability without considering environmental variability. We follow here the 

derivation given in [30]. 

The stochastic differential equation model also has the markov property with probability P(s+k, i+j) , (s, i )(    = prob{ 

        (k, j )|( S(t) , I(t) = (s, i))}  

 The stochastic process is referred to as a diffusion process since it is a Markov process and the infinitesimal mean and 

variance exist. An Ito’s SDE model can be formulated based on the transition probabilities defined in (10) following the 

method postulated by Allen [18, 30]. The SDE model is given in terms of the drift vector, diffusion matrix and an 

independent wiener process. The Ito’s SDE is of the form:dX(t) =f(X(t), t)dt + G(X(t), t)dW(t) where f(X(t) is the drift 

vector, G(X(t), t) is the diffusion matrix and W(t) is an independent wiener process. 

To compute the drift vector f(X(t)), we apply the transitions  (10) and compute the expectations , where 

E(  (    = [A – (           (    

            =   (X(t)   + o(   which gives the value of the random variable  at time t. Generally  

E(  (  ) =  (

  (  

  (  

  (  
) = (

  ( (         (   
  ( (         (   

  ( (         (   
)  =  (X(t)   + o(                             (18) 

Where in this case the drift vector    (X(t)  has the same form as the right side of the deterministic model. 

Let X(t) = (  (     (   T 
 

The covariance matrix of   (   is V(  (  ) and is defined : 

 E(  (     (   T
)– E( X(t))E(  (  )

T   E(  (  [  X(t)]
T
+  (   = var(  (  ) 

Hence the diffusion matrix G(X(t), t)is a 3 x3 matrix defined by(
(                                  

                (               

                              (    

)     (19) 

Where the non zero entries of E(  (  [  X(t)]
T
are gotten from the transitional probabilities in (10) as: 

E((      = [A + (   + d)S]     (    

E(     = - dS    +  (    

E(     =     I     (    

E(    =  (dI + T(I))     (                                                                                           (20) 
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E(     = -T(I)    +  (    

E(     =   -T(I)    +  (    

E(    = dR     +  (    

If we define G(X(t) ) as the diffusion  matrix, entries in G  are defined in terms of the transition changes in a transmission, 

recovery, recruitment and death in square root i.e.  √   ,√  √   √   √  to denote the changes in the various transitions. 

Hence the diffusion matrix can be defined as: 

G(X(t) ) = (

√            √              √                   

           √             √(               

                                    √   √  

)        (21) 

Hence Ito’s SDE takes the form: 

dX(t) = f(X(t), t)dt + G(X(t), t)dW(t) 

dS =              –√        dW1                      (22) 

dI = (             +   √         dW2 . 

where W1 and W2 are two independent Wiener processes.  

The terms W1 and W2associated with the Wiener process makes the model a stochastic SDE model; if they are dropped the 

model becomes an ODE model  

 

A.3. DTMC and SDE for a constant treatment rate 
The formulations of theDTMC and SDE models for a constant treatment term follow the same process as we did above for T 

(I) = rI.  Where we have the results for the transitional probabilities and the forward Kolmogorov’s equation for the DTMC 

and the SDE models respectively as: 

For the DTMC model the transitional probability will be: 

P(s+k,i+j),(s,i)  =

{
 
 
 

 
 
 

                                                             (     (     

                                                                (     (     

                                                                (     (     

                                                               (      (    

                                                                    (     (         

        (                                     (     (    

                                                                                           

     (23) 

Where the difference equation satisfied by the probability P(s, i) (t+  t) can be expressed in terms of the transition 

probabilities: 

P(s,i) (t +   ) = P(s+1,i-1)(t)𝛌(s + 1) (i - 1)    + P(s, i +1) (t) r   +P(s+1, i ) (t) ds    P(s -1,i)(t)A    +  P(s, i )(1 – (𝛌si   – [A + ds 

+ di + r]   )i,s {1,2,3,…,N}         (24) 

For the SDE model we will have: 

dS =             –√        dW1 

dI =(            +   √        dW2        (25) 

where W1and W2 are independent Wiener process. 

Finallyfor case (ii) if T(I) = 0,  the formulation follows the same process to give the results  below for the DTMC and SDE 

models respectively.    

For the DTMC model the transitional probability will be: 

P(s+k,i+j),(s,i)  =

{
 
 
 

 
 
 

                                                             (     (     

                                                                (     (     

                                                               (           (    

                                                                    (     (         

        (                                   (     (    

                                                                                           

   (26) 

With the difference equation satisfied by the probability P(s, i) (t+  t) expressed in terms of the transition probabilities as:    

P(s,i) (t +   ) = P(s+1,i-1)(t)𝛌(s + 1) (i - 1)     + P(s -1,i)(t)A    +P(s+1,i)(t)d(s+1)   +  P(s ,i+1)(t)d(i+1)  + P(s, i )(1 – (𝛌si   

+ A + ds + di]   ),i,s                                                                                                            (27) 

And lastly for the SDE model we have: 

dS =             –√        dW1 

dI =(         +√      dW2  (28)where W1and W2 are terms associated with an independent Wiener process. 
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