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Abstract 
 

The dynamic analysis of a uniform Rayleigh beam resting on Winkler-type 

foundation and under uniform distributed moving masses is investigated in this 

paper. A procedure involving the generalized integral transformation with beam 

function as kernel, the use of properties of Heaviside function to express it in series 

form and a modification of the Struble’s asymptotic technique was used to obtain an 

analytical solution valid for all variants of classical boundary conditions to the 

dynamical problem. The analytical solution and numerical analysis show that the 

critical speed for the moving distributed mass problem is reached earlier than that of 

the moving distributed force problem for both illustration examples considered. The 

results further show that an upward variations of rotatory inertia correction factor 

and foundation stiffness decrease the response amplitudes of the uniform Rayleigh 

beam whether the beam is traversed by moving distributed force or moving distributed 

mass. 

 

 

1.0     Introduction 
The flexural motions under moving masses of Beam-structures on elastic foundations have received great attention of 

researchers due to its wide applications in mechanical and civil Engineering over the years [1-5]. However, in most of the 

investigations, solution procedure fails to cover the entire range of practical problems likely to be encountered. In particular, 

solution techniques are not easily adjustable to the cases in which the end conditions are not simple ones. This shortcoming 

was first addressed by Sadiku and Leipholz [6]. The problem of elastic beam under the actions of moving concentrated 

masses was studied. A method capable of solving this problem for all classical boundary conditions was developed. Though, 

the theory developed in [6] is very versatile, its application is only limited to the case of beam executing flexural vibrations 

according to the simple Bernoulli-Euler theory of flexure. Nonetheless, it is known that during vibration, a typical element of 

a beam performs not only a translatory motion but also rotates [7]. Thus, there is a need to consider beams where motion is 

not governed by Bernoulli-Euler theory. To this end, Gbadeyan and Oni [8] developed a more robust technique which could 

be used to tackle the problems of Bernoulli-Euler beam under moving concentrated masses and also those of thick Rayleigh 

beams. Using this method and other approaches, the problem of beam structures under moving loads have been solved for 

various classical boundary conditions other than simple ones by several authors namely Oni and Omolofe [9], Oni and 

Awodola [10] , Oni and Ogunyebi [11]. 

It is remarked at this juncture, that in most of these investigations, the loads have been idealized as concentrated loads 

whereas, in practice, moving loads are actually distributed over a small segment or over the entire length of the structure. To 

this end, Esmailzadeh and Ghorashi [12] studied the moving-load-induced vibration problem using a moving uniform 

distributed mass model. They solved the problem by means of the conventional analytical approach, which is only suitable 

for the simple horizontal beam and will suffer much difficulty if the structures are complicated. Other recent works involving 

uniformly distributed moving mass model were carried out by Gbadeyan and Dada [13], Dada [14], Oni and Ogunyebi [11], 

Bogacz and Czyczula [15], Kargarnovin and Younesian [16], Sapountzakis and Tsiatus [17] and Jia-Jiang Wu [18]. These 

works, however, concentrated on numerical simulation or limited their consideration to structures having simple end 

supports. This paper, therefore, presents the dynamic analysis of the flexural motions under travelling distributed masses of 

uniform Rayleigh beams with general boundary conditions. The focus is on analytical procedures to generate closed form 

solutions to the dynamical problem. The moving distributed force problem is treated as special cases in the illustrative  
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examples considered.This paper is sequel to an earlier one [19] which treated the problem of elastic uniform Rayleigh beam 

having simply supported boundary conditions.          

  

2.0 Governing Equation 

The motion of a finite uniform Rayleigh beam carrying a motion of distributed load of mass M travelling at constant speed c 

is considered. The position of the load along the beam is given by the single valued function of time x. The equation 

governing the transverse displacement of the Rayleigh beam V(x,t) neglecting damping and shear deformation effect is given 

by [1] 
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where   is the spatial coordinate,   is the time,  (   ) is the transversedisplacement,   is Young’s modulus,   is the constant 

Moment of inertia of the beam,   is the constant mass per unit length of the beam,   is the measure of rotatory inertia 

correction factor,   is the elastic foundation constant, a is the acceleration due to gravity. For this problem, the distributed 

load moving on the beam under consideration has mass commensurable with the mass of the beam. Consequently, the load 

inertia is not negligible but significantly affects the behaviour of the dynamical system. For our purpose we will take   
    where   the velocity of the distributed mass is, the time   is assumed to be limited to that interval of time within which the 

mass   is on the beam, that is 

                                                                                                                                                                    (   ) 

  is the acceleration due to gravity,  (    ) is the Heaviside function defined as 
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   is the convective acceleration operator defined as 
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because the mass M moves with constant velocity the boundary conditions of the above problem are assumed to be arbitrary 

and the initial conditions are given by 

 (   )    (   )                                                                                                                                        (    ) 
 

3.0 Method of Solution 

First,substituting  (2.12) into (2.1), one obtains 
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Equation (3.1) is a fourth order partial differential equation with constant coefficients. It is evident that exact closed form 

solution to this equation is impossible. To this end, an approximate analytical solution is desirable. Thus, a general approach 

is developed in order to solve the initial boundary value problem in equation (3.1). The important features of this technique 

are 

i) It is applicable for all variants of classical boundary conditions often encountered  

 in practice. 

 ii)         It can also solve both thin and thick beam problems which earlier methods have  

 been unable to tackle.  

In order to obtain a solution valid for all variants of classical boundary conditions, in the first instance, we adopt the method 

of generalized integral transform technique extensively described in [8].This integral transformation technique is given by 

  ̅(   )  ∫  (   )  ( )                                                                                                                     (   )
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where 

   ∫    
 ( )                                                                                                                                         (   )

 

 

 

In equation (3.4),   ( ) is any function chosen such that the pertinent boundary conditions are satisfied. An appropriate 

selection of function for the beam problems are beam mode shapes. Thus, the  th normal mode of vibration of a uniform 

beam 
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is chosen as a suitable kernel of the integralin (3.2), where,   is the mode frequency and               are  constants. The 

parameters          and     are obtained by substituting (3.5) into the appropriate boundary conditions. 

Applying the generalized integral transforms (3.2), equation (3.1) can be written as 
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It is generally known that the natural modes in (3.5) satisfy the homogeneous differential equation 
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For the uniform beam, the parameter      is the natural circular frequency defined by  
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From equation (3.13), it is straight forward to write 
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Thus by (3.2) 
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Noting that  ̅(   ) [14] is just the co-efficient of the generalized integral transforms, it is evident that 
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so that integral (3.9) becomes, 
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In order to evaluate the integrals (3.10), (3.11) and (3.12), use is made of theFourier series representation ofthe Heaviside 

step function given by 
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In the same manner, it is straight forward to show that 
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Using the properties of the Heaviside function, the integral in the right hand side of equation (3.6) can be expressed as 
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Substituting (3.16), (3.20), (3.22), (3.23), (3.24), and (3.25) into (3.6) and simplifying yield 
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Equation (3.26) is the transformed equation governing the problem of a uniform Rayleigh beam on a constant elastic 

foundation when under the action of travelling distributed load. This coupled non-homogeneous second order differential 

equation holds for all general boundary conditions. In what follows, two special cases of equation (3.26) are discussed. 

 

4.0 Solution of The Transformed Equation 

(i)            Case I 

If we neglect the inertia term, we have the classical case of a moving force problem. Under this assumption,      and 

equation (3.26) after some simplifications and rearrangements becomes 
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Evidently, an exact analytical solution to this equation is not possible. To this end, a modification of the asymptotic method 

due to Struble already alluded to shall be used to tackle this problem. Consequently, equation (4.1) is rearranged to take the 

form  
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By this technique, one seeks the modified frequency corresponding to the frequency of the free system due to the presence of 

the effect of the rotatory   inertia correction factor   . An equivalent free system operator defined by the modified frequency 

then replaces equation (4.2). Thus, the right hand side of equation (4.2) is set to zero, we then consider a parameter      for 

any arbitrary ratio   , defined as 
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where 

 

|     (   )|                                                                                                                              (   ) 

 

Setting     , a situation corresponding to the case in which the rotatory inertia correction factor is regarded as negligible is 

obtained, then the solution of (4.2) can be written as 
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where                  are constants. 

Furthermore as     , Struble’s technique requires that the asymptotic solution of the homogeneous part of equation (4.2) 

be of the form [16] 
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where  (   )  and  (   ) are slowly varying functions of time  

To obtain the modified frequency, equation (4.9) and its derivatives are substituted into the homogeneous part of equation 

(4.2) and taking into account (4.5) one obtains, 
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Solving equations (4.11) and (4.12) respectively, one obtains  
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Therefore when the effect of the rotatory inertia correction factor is considered, the first approximation to the homogeneous 

system is 
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represents the modified natural frequency due to the effect of rotatory inertia correction factor. Thus to solve the non-

homogeneous equation (4.2), the differential operator which acts on  ̅(   ) and  ̅(   ) is replaced by the equivalent free 

system operator defined by the modified frequency    , i.e 
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Using the method of Laplace transformationin conjunction with the initial condition, it is not difficult to show that the 

solution to equation (4.17) is given by 
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Equation (4.22) represents the transverse displacement response to a distributed force moving at constant velocity of a 

uniform Rayleigh beam resting on elastic foundation and having arbitrary support end conditions. 

 

(ii)            Case II 

If the inertia effect of the moving mass is not negligible, then      and the solution to the entire equation (3.26) is sought. 

This is termed the moving mass problem. An exact analytical solution to equation (3.26) is not possible. Thus, as in the 

previous section, the modified Struble’s asymptotic method is employed to get an approximate analytical solution. To this 

end, equation (3.26) is simplified and rearranged to take the form 

 

 ̅  (   )  
      (     )

       (     )
  ̅(   )  

       (     )     
 

       (     )
 ̅(   ) 

 

 

             ∑
[  (     ) ̅  (   )     (     )  ̅(   )      (     ) ̅(   )]

       (     )

 

   
   

 

 

 

 

 

Journal of the Nigerian Association of Mathematical Physics Volume 27 (July, 2014), 85 – 100 



93 

 

Flexural Motions under a…         Ayankop, Oni and Ogunbamike    J of  NAMP 

 
 

         

     

  
[ (   )     

    

 
      

    

 
       

    

 
       

    

 
]

       (     )
 

 

           (    ) 

where 

 

                (     )  
 

 
  (   )  

 

 
∑

   (    )   

    
  (     )

 

   

 

 

                                       
 

 
∑

   (    )   

    

 

   

  (     )                                                    (    ) 

 

               (     )  
 

 
  (   )  

 

 
∑

   (    )   

    
  (     )

 

   

 

 

                                      
 

 
∑

   (    )   

    

 

   

  (     )                                                      (    ) 

 

              (     )  
 

 
  (   )  

 

 
∑

   (    )   

    
  (     )

 

   

 

 

                                    
 

 
∑

   (    )   

    

 

   

  (     )                                                        (    ) 

and 

  (   )    (   )|                         (     )    (     )|    

 

            (     )    (     )|     (   )    (   )|    
 

           (     )    (     )|     (     )    (     )|    

 

                (   )    (   )|     (     )    (     )|    

 

            (     )    (     )|    

          (4.27) 

Like in the previous case, the homogeneous part of equation (4.23) is considered and a modified frequency corresponding to 

the frequency of the freesystem due to the presence of the moving mass M is sought. An equivalent free system operator 

defined by the modified frequency then replaces equation (4.23). Thus, a parameter     is considered for any arbitrary 

mass ratio   defined as 
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where 
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Following the same arguments with those in the previous section, Struble’s technique is used to obtain 
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as the modified frequency corresponding to the frequency of the free system due to the presence of the moving mass.  

Thus, to solve the non-homogeneous equation (4.23), the differential operator which acts on  ̅(   ) and  ̅(   ) is replaced 

by the equivalent free system operator defined by the modified frequency   , i.e 

 ̅  (   )    
  ̅(   )  

   
  

  

[ (   )     
    

 
      

    

 
                            

      
    

 
       

    

 
]                                                                                                      (    ) 

 

This is analogous to equation (4.17). Thus, using similar argument as in the previous section, the solution to equation (4.33) 

can be obtained as 
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Equation (4.34) now represents the transverse displacement response to a distributed mass moving at constant velocity of a 

uniform Rayleigh beam resting on an elastic foundation which is valid for all variants of classical boundary conditions. For a 

particular boundary condition, it is only necessary to compute the constants           and    from the beam functions 

using the boundary conditions and then substitute back into equation (4.34) 

 

5. 0 Illustrative Examples 

In this section, practical examples of classical boundary conditions are selected to illustrate the analyses presented in this 

paper. 

 

5.1       Clamped-Clamped Uniform Rayleigh Beam 

In this case, both ends of the uniform Rayleigh beam are clamped. Thus, both deflection and slope vanish and we have the 

boundary conditions given by 
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Applications of (5.2)to (3.5) yields 
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The frequency equation becomes 

                                                                                                                      (   ) 

It follows from equation (5.5) that 
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Expression for          and the corresponding frequency equation are obtained by a simple interchange of   with  in 

(5.4) and (5.5). Substituting (5.4) and (5.5) into equations (4.22) and (4.34) one obtains the displacement response 

respectively to a distributed moving force and a distributed moving mass of a Clamped-Clamped uniform Rayleigh beam on 

elastic foundation. 

 

5.2       One End Clamped - One End Free Uniform Rayleigh Beam 

Next at    , the beam is taken to be clamped and at the end    , the beam is free. Thus, the boundary conditions of the 

uniform Rayleigh beam can be written as, 
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and the frequency equation for both end conditions is 
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Using (5.10) and (5.11) in equations (4.22) and (4.34), one obtains the displacement response respectively to a distributed 

moving force and distributed moving mass of a clamped-free uniform Rayleigh beam resting on elastic foundation. 

 

6.0 Discussion of the Analytical Solutions 

At this point, it is important to establish conditions under which resonance occurs for an undamped system such as this. 

Resonance takes place when the motion of the vibrating structure becomes unbounded. 

Equation (4.34) clearly show that, the uniform Rayleigh beam traversed by a distributed force moving with a constant 

velocity will attain resonance at 
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while the same beam under the action of a moving distributed mass experiences resonance effect whenever 

                                                                                                                               (   ) 

but 

 

   
    

     {   
   (   )      (   )}

    

                                               (   ) 

 

which implies that 
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Equations (6.1) and (6.4) show that for the same natural frequency, the critical speed for the same system of a uniform 

Rayleigh beam resting on a constant foundation and traversed by a moving distributed force is greater than that traversed by a 

moving distributed mass. Thus resonance is reached earlier in the moving distributed mass system than in the moving 

distributed force system. 

 

7.0 Numerical Calculations and Discussions 

In order to present the calculations of practical interests in dynamic of structures and Engineering design for illustrative 

examples considered, the uniform Rayleigh beam is taken to be of length L=12.192m. The load velocity, c=8.128     and 

E=2109 10
9
kg/m. The values of the rotatory inertia correction factor r

0
 are varied between 0.005 and 9.5, while the values of 

the foundation moduli constant K are varied between 0 and 4000000   .The flexural vibrations of the uniform Rayleigh 

beam are calculated and graphs are plotted for beam response against time for various values of rotatory inertia correction 

factor r
0
 and foundation moduli K. 

In Figure 7.1, the transverse displacement response of the uniform clamped-clamped Rayleigh beam to distributed forces for 

various values of Foundation moduli   and fixed value of rotatory inertia correction factor r
0   are displayed. It is seen 

from this figure that as the values of the foundation moduli increase, the response amplitude of the clamped-clamped beam 

decrease. The same result is obtained when the clamped-clamped Rayleigh beam is traversed by moving distributed masses 

as shown in Figure 7.3. The response of the clamped-clamped uniform Rayleigh beam to distributed forces for various values 

of rotatory inertia correction factor r
0
 and fixed value of foundation modulus       are shown in Figure 7.2. It is seen 

that the deflection of the beam decreases with increase in the rotatory inertia correction factor. The same result and analysis 

are obtained when the clamped-clamped beam is acted upon by moving distributed masses as shown in figure 7.4. Figure 7.5 

depicts the comparison of the transverse displacement response for moving distributed force and moving distributed mass 

cases of the uniform clamped-clamped Rayleigh beam for fixed values of foundation modulus         and rotatory 

inertia correction factor r
0
=  . Clearly, the response amplitude of the moving distributed mass is greater than that of the 

moving distributed force problem.In Figure 7.6, the transverse displacement response of the uniform clamped-free Rayleigh 

beam to moving distributed forces for various values of Foundation moduli   and fixed value of rotatory inertia correction 

factor r
0   are displayed. It is seen that as the values of the foundation moduli increases, the response amplitude of the 

clamped-free beam under the action of distributedforces decreases. The same behaviour characterizes the deflection profile of 

the clamped-free Rayleigh beam under the action of moving distributed masses for various foundation moduli as is depicted 

in Figure 7.8. Furthermore, the deflection profile of the clamped-free uniform Rayleigh beam under moving distributed 

forces for various values of rotatory inertia correction factor r
0
 and fixed value of foundation modulus        is shown in 

Figures 7.7. It is seen that the deflection of the beam decreases with increase in the rotatory inertia correction factor. The 

same result and analysis are obtained when the cantilever beam is traversed by moving distributed masses as shown in figure 

7.9. Finally, Figure 7.10 depicts the comparison of the transverse displacement response for moving distributed force and 

moving distributed mass cases of the uniform clamped-free Rayleigh beam for fixed values of foundation modulus   
       and rotatory inertia correction factor r

0  . It is observed that the response amplitude of the moving distributed 

force is greater than that of the moving distributed mass problem. 

 

8.0 Conclusion 
A closed form solution valid for all variants of classical boundary conditions of the dynamical system is presented for the 

displacement response to a travelling distributed mass of a finite uniform Rayleigh beam resting on an elastic foundation. The 

solution technique is based on the generalized integral transformation, the representation of the Heaviside function in series 

form and a modification of Struble’s asymptotic method often used in treating homogeneous and non-homogeneous 

nonlinear oscillatory systems. Numerical calculation and representation in plotted curves for both illustrative examples 

considered depict the following interesting results: 

(i) the critical speed for the same system consisting a finite uniform Rayleigh beam resting on an elastic foundation and 

traversed by a moving distributed force is greater than that traversed by a moving distributed mass. Hence, 

resonance is reached earlier in the moving distributed mass system than in the moving distributed force system. 

(ii) as the rotatory inertia correction factor r
0 

increases, the transverse displacement response of the beam model 

decreases. 

(iii) for both moving distributed force and moving distributed mass problems, the response amplitudes of the Rayleigh 

beam decrease as the foundation modulus K increases and finally, 
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(iv) for fixed values of foundation modulus K and rotatory inertia correction factor r
0
,  the response amplitude of the 

moving distributed mass problem is greater than that of the moving distributed force problem. This confirms the 

result already reported in literature for cases when the travelling load is modelled as concentrated loads. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 7.1: Displacement response todistributed forces of uniform clamped-clamped Rayleighbeam for various values of 

foundation moduli K. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 7.2: Displacement response to distributed forces of uniform clamped-clamped Rayleigh beam  for various values of 

rotatory  inertia correction factor   .    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 7.3: Deflection profile of uniform clamped-clamped Rayleigh beam under action of action of distributed masses for 

various values offoundationmoduli K. 
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Fig 7.4: Deflection profile of uniform clamped-clamped Rayleigh beam under action of  distributed massesfor various values 

of Rotatory inertia correction factor Ro. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 7.5: Comparison of displacementresponse to distributed force and distributed mass cases of uniformclamped-clamped 

Rayleigh beam for fixed values of K=400000 and r
0
=5. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 7.6: Displacement response of  uniform clamped-free Rayleigh beam under action of distributed forcesfor various values 

of foundation  moduli K. 
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Fig 7.7: Displacement response of  uniform clamped-free Rayleigh beam under action of distributed forces for  various 

values of rotatory inertia correction factor   .  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 7.8: Deflection profile of uniformclamped-free Rayleigh beam under action of distributedmasses for various values of 

foundation moduli K. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 7.9: Deflection profile of uniform clamped -free Rayleigh beam under action of distributed masses for various values of 

rotatory inertia correction factor r
0  
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Fig 7.10: Comparison of displacement response to distributed force anddistributed mass cases of uniformclamped-free 

Rayleigh beam forfixed values of K=400000 and r
0
=5 
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