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Abstract 
 

The Two- dimensional deformation of homogeneous, isotropic, thermoclastic 

half-space with voids as a result of inclined line load is investigated by applying the 

Laplace and Fourier transforms.  The inclined load is assumed to be a linear 

combination of a normal load and a tangential load.  The displacements, stresses, 

temperature distribution and change in volume fraction field are obtained in the 

physical domain and some isolated cases are stated with a particular case as results. 
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1.0     Introduction 
The Theory of linear elastic materials with voids is one of the most important generalizations of the classical theory of 

elasticity.  This theory has practical utility for investigating various types of geological and biological materials for which the 

classical elastic theory is inadequate.  This theory is concerned with elastic materials having a distribution of small pores 

(voids) in which the void volume is included among the kinematics variable and in the limiting case of volume tending to 

zero, the theory reduces to the classical theory of elasticity.   

 A nonlinear theory of elastic materials with voids was developed by Nunziato and Cowin [1].  Later, Cowin and 

Nunziato [2] developed a theory of linear elastic materials with voids for the mathematical study of the mechanical behavior 

of porous solids.  They considered several applications of the linear theory by investigating the response of the materials to 

homogeneous deformations, pure bending of beams and small amplitudes of acoustic waves.  Puri and Cowin [3] studied the 

behavior of plane waves in linear elastic materials with voids.  Domain of influence theorem in the theory of elastic materials 

with voids was discussed by Dhaliwal and Wang [4].  Scarpetta [5] studied the well-posedness theorems for linear elastic 

materials with voids.  Birsan [6] established the existence and uniqueness of weak solutions in the linear theory of elastic 

shells with voids 

 Rusu [7] studied the existence and uniqueness of solutions in thermoelastic materials with voids Saccomandi [8] 

presented some remarks about the thermoelastic theory of materials with voids.  Ciarletta and Scalia [9] discussed the 

nonlinear theory of nonsimple thermoelastic materials with voids. Dhaliwal and Wang [10] developed the heat-flux 

dependent theory of thermoelasticity with voids.  Marin [11, 12] studied the uniqueness and domain of influence results for 

thermoelastic bodies with voids.  Marin [13] presented the contributions on uniqueness in thermoelastodynamics for bodies 

with voids.  Marin and Salca [14] obtained the relation of the KnopoT-de Hoop type in thermoelasticity of dipolar bodies 

with voids.  Chirita and Scalia [15] studied the spatial and temporal behaviour in linear thermoelasticity of materials with 

voids. 

 When the source surface is very long in one direction in comparison with the others, the use of two-dimensional 

approximation is justified and consequently, calculations are simplified to a great extent and one gets analytical solutions in 

closed form.  A very long strip-sources and a very long line-source are examples of such two-dimensional sources.  Love [16] 

obtained expressions for the displacements due to a line source in an isotropic elastic medium.  Maruyama [17] obtained the 

displacement and stress fields corresponding to long strike-slip faults in a homogeneous isotropic half-space.  Okada [18,19] 

presented a compact analytic expressions for the surface deformation and internal deformation due to inclined shear and 

tensile faults in a homogeneous isotropic half-space.  Several authors [20, 21, 22, 23] discussed the problems of inclined load 

in the theory of elastic solids.  No attempt has been made so far to study the response to inclined load in a thermoclastic body 

with voids. 

 We study the general plane strain problem of thermoelastic half-space with voids due to different sources.  The 

integral transform techniques has been used to solve it.  We have obtained the expression for displacements, stresses, 

temperature distribution and change in volume fractions field in a thermoelastic half-space with voids due to an inclined line  
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load in the form of Laplace and Fourier transforms, which could be converted to the original solution numerically but was not 

done as it is not a subject of this paper.  The deformation due to other sources such as strip loads, continuous line loads etc., 

can also be similarly obtained.   

 

2.0 Basic Related Mathematical Equations 
Following Lord-Shulman [24], Green-Lindsay [25] and Cowin and Nunziato [2], the field equations and constitutive relations 

in thermoelastic solid with voids without body forces, heat sources and extrinsic equilibrated body force can be written as: 
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In Eqs. (1) – (4) we have used the notations:  ,  as  Lanme constants,  (stress times squared length),  1,b  (Stress), 0  

(stress times time),  (equilibrated inertia) which are material constants due to the presence of voids, m (stress temperature 

coefficient) material constant due to the presence of voids and temperature, T – temperature change, 

   tt  ,23  linear thermal expansion coefficient u – displacement vector, ijt - stress tensor, ec, - density 

and specific heat at constant strain, respectively, K-thermal conductivity, temperature; a superposed dot denotes 

differentiation with respect to time, variables 10 ,, t  are thermal relaxation times.  For the L-S theory, 1,0 11  k  and 

for the G-L theory 0,0 11  k  (i.e., k =1 for the L-S theory and k=2 for the G-L theory).  The thermal relaxations 0  

and 1  satisfy the inequality 001   for the G-L theory only,  
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are the gradient and Laplacian operators respectively. 

 

3.0 Formulation and solution of the problem 

 We consider a homogeneous, isotropic, thermally conducting elastic half-space with voids in the undeformed state at 

uniform temperature T0.  The rectangular Cartesian coordinate system (x,y,z) with z-axis pointing vertically into the medium 

is introduced.  

 Suppose that an inclined line load 0F  per unit length is acting on the y-axis and its inclination to z-direction is . To 

simplify the algebra, only problems with zero initial conditions are considered. 

For a two-dimensional problem, we assume u  wu ,0,  and Eqs. (1) – (4). 

We  introduce the dimensionless quantities: 
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Where 
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 The expression relating the displacement components u(x,z,t) and w(x,z,t) to the scalar potential functions 

 tzx ,,1  and  tzx ,,2  in dimensionless form are given by 
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Applying the Laplace and Fourier transforms 
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To equations (1) – (3), after using Eqs. (6), (7) (suppressing the primes) and eliminating T
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 The roots of Eqs. (11) and (12) are 
 .4,3,2,1    Assuming the regularity condition at z , the solution 

of Eqs. (11) and (12) may be written as  
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with   4,3,2,1A  being arbitrary constants and e  and d  are given in Appendix C. 

 

4.0 Application 

 Consider a normal line load of intensity F1, per unit length, acting in the positive z-direction on the plane boundary 

0z   along the y-axis and a tangential line load 2F , per unit length, acting at the origin in the positive x-direction then the 

boundary conditions are  
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where  t  is the Dirac delta function,  x   and   x  denote the vertical and horizontal load functions, respectively, 

distributed along the x-axis, h is the heat transfer coefficient, 1F  and 2F  are force intensities. 

Using Eqs. (5) and (6) along with  
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   in the boundary conditions (17) (suppressing the primes for 

convenience) and applying the Laplace and Fourier transforms defined by Eq. (10), we obtain the transformed boundary 

conditions as 
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where   ~  and  
~

  are the Fourier transforms of  x   and  x  respectively.   

 Making use of Eqs. (4) – (9) (suppressing the primes for convenience) and applying the Laplace and Fourier 

transform defined by (10) in the transformed boundary conditions (18) and substituting the values of  

~

,
~~,~

21 T
 from 

equations (13) - (16), we obtain the expressions for displacement components, stresses,  temperature distribution and change 

in the volume fraction field respectively  as follows: 
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4.1  Some Important Results 

4.1.1   Inclined line load 

 For an inclined line load 0F  per unit length, we have  

.sin,cos 0201  FFFF                  (19) 

 

CASE 1. Concentrated force 
 In this case 
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CASE 2. Uniformly distributed force 
 The solution due to uniformly distributed force applied to the half-space surface is obtained by setting 
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in Eq. (18).  The Laplace and Fourier transforms with respect to the pair  ,x  for the case of a uniform strip load of unit 

amplitude and width 2a applied at the origin of the coordinate system  0 zx  in dimensionless form, after suppressing 

the primes, becomes   
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CASE  3. Linearly distributed force 
 The solution due to linearly distributed force applied to the half-space surface is obtained by setting. 
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in Eq. (17), where 2a is the width of the strip load.  Using Eqs. (6) – (7) (suppressing the primes) and applying the transforms 

defined by Eq. (10),we get 
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Using Eq. (20) in Eqs. (C.1)  and with the aid of Eqs. (21) – (22), we obtain the expressions for displacements, stresses, 

temperature distribution and change in the volume fraction field for different sources applied on the surface of the 

thermoelastic half-space with voids. 

 

4.1.2 Particular case 

 If we neglect the voids effect, [27], i.e.  00   mb  in the Eqs. (C.1) along with Eqs. (20), we 

can also obtain the expressions for displacement components, stresses and temperature distribution in the thermoelastic half-

spaces. 

  

SUB-CASE 1:   If 0h , Eqs. (C.1) yield the expressions of displacements, stresses, temperature distribution and change 

in the volume fraction field for the insulated boundary.  

  

SUB-CASE 2:  If h , Eqs. (C.1) yield the expressions of displacements, stresses, temperature distribution and change 

in the volume fraction field for the isothermal boundary. 

  

SPECIAL CASE 1: By putting k=1 and 01   in Eqs. (C. 1), we recover the displacements, stresses, temperature 

distribution and change in volume fraction field for L.S theory. 

 

SPECIAL CASE 2: For the G-L theory, we obtain the corresponding expressions for displacements, stresses, 

temperature distribution and change in the volume fraction field by substituting k=2 in Eqs. (C.1). 

  

SPECIAL CASE 3: The expressions for displacements, stresses, temperature distribution and change in the volume 

fraction field for the theory of coupled thermoelasticity (CT) are obtained by putting 0,3 10  k  in Eqs. (C.1). 

 

5.0 Inversion of the transforms 

 To obtain the solution of the problem in the physical domain, we must invert the transforms in equations (C.1) for 

the two theories, i.e., L-S and G-L.  These expressions are functions of z, the parameters of Laplace and Fourier transforms p 

and , respectively, and hence they are of the form  pzf ,,
~
 .  To get the function  tzxf ,,  in the physical domain, first 

we invert the Fourier transform using the formula: 
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where ef  and 0f  are, respectively, even and odd parts of the function   pzf ,,ˆ  .   

 Thus, expression (25) gives us the Laplace transform  pzxf ,,ˆ  can be inversed to  tzxf ,, .  

 The last step is to calculate the integral in Eq. (5.1).  The method for evaluating this integral is described by Press et 

al [26] and Kumar and Ranu [27], and it involves the application of Romberg’s integration with adaptive step size. This uses 

also the results of successive approximations of the extended trapezoidal rule followed by extrapolation of the results to the 

limit when the step size tends to zero.  
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The numerical results of this analysis is not the subject of this paper and will be shown in the next paper. 

 

6.0 Conclusion 

The expressions for displacements, stresses and temperature distribution in the case of inclined line load can be obtained for 

concentrated, uniformly, and linearly distributed force by application of equations (20) – (23) in (C.1).   
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