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Abstract 
 

This paper obtained various relationships among determining matrices, partial 

derivatives of indices of control systems matrices of all orders,as well as their 

relationships with systems coefficients for a class of double – delay autonomous 

linear differential systems through a sequence of lemmas, theorems, corollaries and 

the exploitation of key facts about permutations. The utility of these relationships is 

for the most part, in the investigation of Euclidean controllability. 

 The proofs were achieved using ingenious combinations of summation 

notations, the multinomial distribution, greatest integer functions, change of 

variables techniques and deft deployment of skills in the differentiation of certain 

matrix functions of several variables. 

 

 

1.0     Introduction 

The importance of the relationships among determining matrices, indices of control systems matricesand systems coefficient 

derives from the fact that these relationships pave the way for the determination of Euclidean controllability and compactness 

of cores of Euclidean targets. This paper brings fresh perspectives to bear on such relationships, as reflectedin theorems 2.3, 

2.4 and corollaries 3.1 through 3.3 to say the least. 

 

1.1 Identification of Work-based Double-delay Autonomous Control System 
We consider the double-delay autonomous control system: 

         

     

0 1 2 2 ; 0 (1.1)

, 2 , 0 , 0 (1.2)

x t A x t A x t h A x t h B u t t

x t t t h h

      

   
  

where 0 1 2, ,A A A are n n  constant matrices with real entries, B  is an n m  constant matrix with real entries. The 

initial function    is in   2 , 0 , nC h R , the space of continuous functions from [ 2 , 0]h   into the real n-dimension 

Euclidean space, 
nR  with norm defined by

 
 

2 , 0

sup
t h

t 
 

 , (the sup norm). The control u is in the space

  10, , nL t R , the space of essentially bounded measurable functions taking  10, t  into 
nR  with norm

1[0, ]

sup ( )
t t

ess u t


 .  

Any control   10, , nu L t R  will be referred to as an admissible control. For full discussion on the spaces

1 and (or )p p

pC L L
, {1,2,..., }p  , see [1] and [2] and [3]. 
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1.2 Preliminaries on the Partial Derivatives
( , )

, , ,








0 1

k

k

X t
k  

Let  1, 0,t t  . For fixed t, let  , t   satisfy the matrix differential 

equation        

       0 1 2, , , 2 , (1.3)X t X t A X h t A X h t A


   


     
 

for 0 , , 0,1,...t t k h k      where    ;
0;

, nI t
t

X t







  

 See [4], [5] and [6] for properties of  ,t   . Of particular importance is the fact that  ,t    is analytic on the 

intervals     1 1 11 , , 0,1,..., 1 0t j h t j h j t j h       . Any such   1 11 ,t j h t j h      is called a 

regular point of  ,t   . Let
   ,
k

X t denote  1,
k

k
t




 
  , the 

thk  partial derivative of  1,X t  with respect 

to , where   is in   1 11 , ; 0,1,...,t j h t j h j r    , for some integer r such that  1 1 0t r h   .  Write

     1

1 1, ,
k kX t X t


 






. 

Define   

     

             1 1 1 1 1 1 1

1

, , , , , (1.4)

for  0,1,...; 0,1,...; 0,

k k k
X t jh t X t t j h t X t j h t

k j t jh

 
     

   
  

where
    1 1,
k

X t j h t


  and 
    1 1 1, ,
k

X t t j h t


  denote respectively the left and right hand limits of 

   1,
k

X t  at 1t j h   .  Hence 

 
  ( )

1 1 1

1
( 1)

1 1

( ) (1.5), lim ,k
k

X
t jh

t j h t jh

X t jh t t






 

    

 

 

 
  

1

( )

1 1

1

( 1)
1 1

,lim( ) , (1.6)
k

k X

t jh

t jh t j h

tX t jh t






 

    

 

 
 

1.3  Definition, Existence and Uniqueness of Determining Matrices for System (1.1) 
 Let Q k (s) be then n n  matrix function defined by  

         0 1 1 1 2 1 2 1.7k k k kQ s A Q s AQ s h A Q s h      
 

for  1,2, ; 0,k s 
with initial conditions:  

 0 0 nQ I    (1.8) 

 0 0; 0Q s s     (1.9) 

These initial conditions guarantee the unique solvability of (1.7). Cf. [7] 
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2.0 Theoretical Framework 

 

2.1 Theorem relating 1 1( , ) ( )to  kX t jh t Q jh
 

   ( )

1 1 1, 1 ( ), : 0. (2.1)
kk

kX t jh t Q jh j t jh      
  

Proof 

If k = 0, then      (      1t  =   (      1t  
sgn(max{0, 1 })nI j 

 

0

, if  0
( ) ( 1) ( )

0, otherwise

nk

k

I j
Q jh Q jh


    

  
If  k = 1, then we have   

     (      1t  =     (         1t        (         1t ) 

=   (         1t      (             1t       (             1t     

        (         1t      (             1t       (             1t      

=     (      1t       (           1t         (            1t      

= 

{
 
 

 
                       

                        

                    

                                         

 

1 1

1( 1) ( ) ( 1) sgn(max{0, 3 })jQ jh A j         (2.2) 

So the theorem is valid for    {0, 1}. 

The rest of the proof  by induction on k.  Assume that the theorem is valid  

for 2 ≤  k ≤  n, for some integer n. Then 

       (      1t   =       (         1t                   1t   

= [
 

  
         1t  ]    [

 

  
         1t  ]             

=     (        1t                        1t      

   (            1t      

      (        1t                        1t      

       (            1t      

 

=  [
            1t                      1t    

                   1t    

] 

= ( 1                                            
(by the induction hypothesis) 

= ( 1            , (by the proof of theorem. 3.1 or 3.2 of [8]with ‘leading’replaced by ‘trailing’).  

Thus, the theorem is valid for k = n + 1 and hence valid for every non-negative integer k  and for all   : t1  h > 0. 

                            
            (   1t )  

ncR  
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and       
   

       
   

        
   

                    

where

   

      
  

   

       and 
(.)T

denotes the transpose of 
(.).

 

 

2.2 Corollary to Theorem 2.1 

 
   

(c,         = (        (   B, for k = 0, 1, …; and   : t1  h> 0                     (2.3) 

Proof 

Let   be a non-negative integer such that t1  h> 0. Then  

 
   

(c,         =        (      1t ) =                 (by theorem 2.1) 

=                 as desired. 

 

2.3 Theorem relating 
2

0

k

i i

i

A


 
 
 
 to ( )

k
Q jh involving certain evaluations at

0 1 2
( , , ) 0

T      

For any real variables    ,   ,    and for any integer k ≥ 0, 

2

0

k

i i

i

A


 
 

 
   )4.2(0

2

0

2

2

0

2

22

10  

















 



  jhQk

k

j

jk

r

kjrrjkr

 
in all permutation terms in       

   
        

  
      

, involving   
    

    
    for which 

0 1 2 0 1 2( , , ) ( ,2 2 , ), where ( , , ) and all superscripts are nonnegative.r r r r k j r r j k         
 

Proof 

k = 0    = 0   r = 0   rhs =    = lhs; k = 1      {0, 1, 2} 

  = 0, r = 0   rhs is infeasible and hence may be set equal to 0 

  = 0, r = 1   rhs =              ;   = 1   r = 0   rhs =               

  = 2   r = 0   rhs =                 

Adding up all the feasible contingencies we obtain  

rhs=               = 

2

0

.i i

i

A


 So, the lemma is valid for k   {0, 1}. 

Let us examine the case k = 2: k = 2     {0, 1, 2, 3, 4}. 

  = 0   r   {0, 1, 2};   = 0, r   {0, 1,}   rhs is infeasible. 

  = 0, r = 2   rhs =   
   (0) =   

   
 ;   = 1 r   {0, 1,};   = 1, r = 0   rhs is infeasible. 

  = 1, r = 1  rhs =             =      [             
  = 2  r  {0, 1};   = 2, r = 0   rhs =  

         

       
         =  

  [               
   

  = 2, r = 1   rhs =            =      [               
   

  = 3 r = 0   rhs =              =      [             
  = 4  r  rhs =   

          
   

  

Set    = 0 in the term   
 [            ; set    =    = 0 in the term        

  

Add up the feasible cases with the indicated evaluations to get  

rhs=  
   

  +       [            +   
   

  +      [            

         +       [             +   
   

  =

2
2

0

i i

i

A


 
 
 
 = lhs 

       {0, 1, …, 6},  r   {0, … [[
   

 
]];   = 0  r  {0, 1, 2, 3}  r = 0, 1, 2 or 3  

                   rhs              , since 0.r j k    
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  = 0, r = 3   rhs = =   
      =   

   
 , by  lemma 2.5 of [8]. We are done with j = 0. 

  = 1    r  {0, 1}                    
                 

         =  
       

                          
   . 

We are done with    = 1. 

 = 2  r   {0, 1, 2};   = 2, r = 0   rhs is infeasible.  

  = 2, r = 1   rhs =       
       =      

 [
  

            
               

        
                   

     

] 

 = 2, r = 2   rhs =   
           =   

   [
  

            
               

        
                   

     

]. 

We are done with  = 2. 

  = 3  r   {0, 1};   = 3, r = 0   rhs =   
        

          =   
 [

                                     

                                            
 ]. 

                            

             [
                                           

                            
 ] 

We are done with      
 = 4   r   {0, 1};   = 4, r = 0   rhs =  

            

             =   
     [

         
                 

     

    
                       

 ] 

 = 4, r = 1   rhs =       
        

              =       
 [     

                 
        

                       
 ]  

We done with  = 4. 

 = 5  r = 0   rhs =       
       =       

 [    
                

    ]. 

We done with   = 5. 

 = 6  r = 0   rhs =   
       =    

   
 . 

Now, apply the evaluation procedure to k = 3, for all the contingencies, to get  

rhs =   
   

    
    [  

                       
 ] +      

 [      
                 

   ] 

          +   
       

            
             +   

   
  

         +          [
                                      

                                        
] 

         +   
       

                     
   +      

       
               

     
         +      

       
               

      +   
   

  
3

2

0

lhsi i

i

A


 
  
 


 
So the theorem is also true for k = 3 and hence true for {0,1,2,3}.k  

Now we can apply the induction principle to k. Assume that the lemma is valid  

for 4 ,k n  for some integer n . Then  

1
2

0

n

i i

i

A





 
 
 
 =                  

2

0

n

i i

i

A


 
 
 
  

=                     
2

0

n

j

  

2

2
2 2

0 1 2

0

0,

n j

r n j r r j n

n

r

Q jh   

  
  
  

   



  

in all permutation terms in   
   

        
  

      
  involving   

    
    

   , for which  

0 1 2( , , ) ( ,2 2 , )r r r r n j r r j n     , (by the induction hypothesis) 
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We now examine       

2

0

n

j

  

2

2
2 2

0 1 2

0

;

n j

r n j r r j n

n

r

Q jh  

  
  
  

   



  

  

















 




n

j

jn

r

n

njrrjnr jhQ
2

0

2

2

0

2

22

10    

















 




n

j

jn

r

n

njrrjnr jhQ
2

0

1
2

2

1

1

2

)1(22

1

1

0 

 





n

j

2

0

 















 




2

)1(2

1

1(

2

2)1(2

1

1

0

jn

r

n

njrrjnr jhQ 





)1(2

0

n

j

 















 




2

)1(2

1

)1(

2

2)1(2

1

1

0

jn

r

n

njrrjnr jhQ
 

(since   (           = 0,   (          = 0 by (i) of  lemma 2.6 of [8] 







)1(2

0

n

j

 















 




2

)1(2

0

)1(

2

2)1(2

1

1

0

jn

r

n

njrrjnr jhQ
 

(sincer = 0 is infeasible and so may be discarded) 

Hence                      




n

j

2

0

 















 




2

)(2

0

2

22

10

jn

r

n

njrrjnr jhQ
 

2( 1)

0

n

j





   

2( 1)

2
2( 1) 2 ( 1)

0 1 2 0

0

n j

r n j r r j n

n

r

A Q jh  

   
  
  

     



     (2.5) 

Now we examine         

2

0

n

j

  

2

2
2 2

0 1 2

0

;

n j

r n j r r j n

n

r

Q jh  

  
  
  

   



  




n

j

2

0

 















 




2

2

0

2

22

10

jn

r

n

njrrjnr jhQ 





12

1

n

j

 















 



 
2

)1(2

0

1

2

2)1(2

10 ]1[

jn

r

n

njrrjnr hjQ
 







12

1

n

j

 















 



 
2

)12

0

)1(

2

212

10 ]1[

jn

r

n

njrrjnr hjQ 





)1(2

0

n

j

 ,]1[
2

))1(2

0

)1(

2

212

10















 



 

jn

r

n

njrrjnr hjQ
 







)1(2

0

n

j

 ,]1[
2

))1(2

0

)1(

2

212

10















 



 

jn

r

n

njrrjnr hjQ
 

since   ([2n + 2    ) =   ([2n +    ]) = 0, by (i), lemma 2.6 of [8] 

and   ([0    ]) = 0, by (iii), lemma 2.5 of  [8] 

Hence    

    




n

j

2

0

 















 




2

2

0

2

22

10

jn

r

n

njrrjnr jhQ
 

2( 1)

0

n

j





   

2( 1) )

2
2( 1) 2 ( 1)

0 1 2 1

0

[ 1]

n j

r n j r r j n

n

r

AQ j h  

   
  
  

     



   (2.6) 
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Finally we examine       

2

0

n

j

  

2

2
2 2

0 1 2

0

;

n j

r n j r r j n

n

r

Q jh  

  
  
  

   



  




n

j

2

0

 















 




2

2

0

2

22

10

jn

r

n

njrrjnr jhQ 





22

2

n

j

 















 



 
2

)2(2

0

1

2

2

2)2(2

10 ]2[

jn

r

n

njrrjnr hjQA
 







)1(2

2

n

j

 















 



 
2

)2(2

0

1

1)1(

2

2)1(2

10 ]2[

jn

r

n

njrrjnr hjQA
 







)1(2

0

n

j

 















 



 
2

)1(2

0

1

1)1(

2

2)1(2

10 ]2[

jn

r

n

njrrjnr hjQA
 

since   ([0  2  ) =   (2h) = 0 and     ([1   ) =   (h) = 0, by  lemma 2.5of  [8]. 

Hence          




n

j

2

0

 















 




2

2

0

2

22

10

jn

r

n

njrrjnr jhQ
 







)1(2

0

n

j

  (2.7)]2[
2

)1(2

0

2

)1(

2

2)1(2

10















 



 

jn

r

n

njrrjnr hjQA
 

Now add up expressions (2.5), (2.6) and (2.7) to obtain 






)1(2

0

n

j

     















 



 
2

)1(2

0

210

)1(

2

2)1(2

10 ]2[]1[[

jn

r

nnn

njrrjnr hjQAhjQAjhQA
 

However,          =          +      ([    ) +       ([    ), from the determining equation (1.7), yielding  

Expressions (2.5) + (2.6) + (2.7)

2( 1)

0

n

j





   

2( 1)

2
2( 1) 2 ( 1)

0 1 2 1

0

n j

r n j r r j n

n

r

Q jh  

   
  
  

     





  

Hence, 

1
2

0

n

i i

i

A





 
 

 
   01

)1(2

0

2

)1(2

0

)1(

2

2)1(2

10 




















 



   jhQn

n

j

jn

r

njrrjnr

 

in all permutation terms in       
   

            
  

          
, involving   

    
    

    for 

0 1 2 0 1 2which  ( , , ) ( ,2( 1) 2 , ( 1)), where ( , , ).r r r r n j r r j n           
 

So the theorem is true for k = n + 1 and hence true for every nonnegative integer k. 

2.4 Theorem Indirectly Relating 
2

0

k

i i

i

A


 
 
 
 to ( )

k
Q jh in a More Computationally Efficient 

Form. 
 

For any real variables,  0,  1,  2 and for any integer k ≥ 0 
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1

1 0( ),1(2 2 ), 2( )

2

22
2 2 2

0 1 2

0 0
0 ( , , )

, if  1 (2.8)

, if  0

k

k r k j r r j k

k j

kk
r k j r r j k

i i v v
j r

i v v P

n

A A A k

I k

  
   

  
  
  

   

 
 


  

  
  



  

 
for all feasible (nonnegative integer ) superscripts. 

Proof 

k = 1   lhs =                  ; for the rhs, k = 1       {0, 1, 2} 

  = 0   r   {0, 1};   = 0, r = 0   infeasibility;   = 0, r = 1           

  = 1   r = 0          ;   = 2   r = 0           

Adding up above contingencies for k = 1, we get rhs =      +      +      = lhs 

k = 2      {0, 1, 2, 3, 4};   = 0      {0, 1, 2};   = 0,    {0, 1}   infeasibility  

  = 0, r = 2      =     
     = 1      {0, 1};   = 1, r = 0   infeasibility 

  = 1, r = 1      =     [    +      ;   = 2      {0, 1} 

  = 2, r = 0   rhs =   
   

     = 2, r = 1   rhs =     [    +      . 
  = 3,   r = 0   rhs =     [    +      ;   = 4,   r = 0   rhs =   

   
  

Adding up the rhs for k = 2, we get  

      
   

  +     [     +      +   
   

  +     [     +       
                            +   

   
  +     [     +       =lhs 

So the result is true for    {1, 2} 

The rest of the proof is by mathematical induction.  

Assume that the lemma is true for 3 ≤ k ≤ n, for some integer n. Then 
1

2 2

0 0 1 1 2 2

0 0

( )

n n

i i i i

i i

A A A A A    



 

   
     

   
 

 

1

1 0( ),1(2 2 ),2( )

2

22 2
2 2

0 1 2

0 0 0 ( , , )
n

n r n j r r j n

n j
n

n
r n j r r j n

i i

i j r

v v
v v P

A A A   
   

  
  
  

   

   

 
 

 
   

 

We proceed to examine 

1

1 0( ),1(2 2 ),2( )

2

22
2 2

0 0 0 1 2

0 0 ( , , )
n

n r n j r r j n

n j

n
r n j r r j n

j r

v v
v v P

A A A   
   

  
  
  

   

  
  

 

2

22
2 2

0 1 2

0 0
1

1 0( ),1(2 2 ),2( )( , , )

Now, 

n j

n
r n j r r j n

j r
n

n r n j r r j n

v v
v v P

A A  

  
  
  

   

 
   

  
 

2
1

22
1 2 2( 1) 1

0 1 2

0 1
1

1 0( 1),1(2 2( 1),2( 1 )( , , )

n j

n
r n j r r j n

j r
n

n r n j r r j n

v v
v v P

A A  

  
  

  
      

 
      

   
 

2( 1)

22
1 2( 1) 2 ( 1)

0 1 2

0 1
1

1 0( 1),1(2( 1) 2 ),2( ( 1))( , , )

n j

n
r n j r r j n

j r
n

n r n j r r j n

v v
v v P

A A  

   
  
  

      

 
      

   
 

2( 1)

22( 1)
1 2( 1) 2 ( 1)

0 1 2

0 1
1

1 0( 1),1(2( 1) 2 ),2( ( 1))( , , )

n j

n
r n j r r j n

j r
n

n r n j r r j n

v v
v v P

A A  

   
     

      

 
      

   
 

since     {2n + 1, 2(n+1)}, r ≥ 1    (n+1) -   – 2r< 0 and so, the terms with 

    {2n + 1, 2(n+1)} drop out.  
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The last expression is the same as: 

1

1 0( 1),1(2( 1) 2 ),2( ( 1))

2( 1)

22( 1)
1 2( 1) 2 ( 1)

0 1 2
0 0 ( , , )

,
n

n r n j r r j n

n j

n
r n j r r j n

j r
v v

v v P

A A  

  
  
   

      

 


      

  
  

 

since 0 1 1 0,r r      so that the terms with r = 0 drop out. 

Hence 

2

22
2 2

0 0 0 1 2

0 0
1

1 0( ),1(2 2 ),2( )( , , )

 

n j

n
r n j r r j n

j r
n

n r n j r r j n

v v
v v P

A A A   

  
  
  

   

 
   

  
 

2( 1)

22( 1)
2( 1) 2 ( 1)

0 1 2

0 0
1 1

1 1 0( ),1(2( 1) 2 ),2( ( 1))( , , )

, (2.9)

n j

n
r n j r r j n

j r
n

n r n j r r j n

v v
v v P

A A  

   
     

     

 


      

   
 

with a leading 0 .A  

Next, we examine 
1

1 0( ),1(2 2 ), 2( )

2

22
2 2

1 1 0 1 2
0 0 ( , , )

 
n

n r n j r r j n

n j

n
n j r r j nr

j r
v v

v v P

A A A   

  
  
   

   



   

  
    

1

1 0( ),1(2 2 ),2( )

2

22
2 2

0 1 0

0 0 ( , , )

 Clearly,  
n

n r n j r r j n

n j

n
r n j r r j n

j r

v v
v v P

A A  
   

  
  
  

   

  
  

 
2 ( 1)

22 1
2 ( 1) 2 1

0 1 2

1 0
1

1 0( 1),1(2 ( 1) 2 ),2( 1 )( , , )

n j

n
r n j r r j n

j r
n

n r n j r r j n

v v
v v P

A A  

   
  
   

     

 
      

   
 

2 1

22 1
2 1 2 ( 1)

0 1 2

0 0
1 1

1 0( ),1(2 1 2 ),2( ( 1))( , , )

,

n j

n
r n j r r j n

j r
n

n r n j r r j n

v v
v v P

A A  

   
  
   

     

 


     

   
 

2( 1)

22( 1)
2 1 2 ( 1)

0 1 2

0 0
1

1 1 0( ),1(2 1 2 ),2( ( 1))( , , )

,

n j

n
r n j r r j n

j r
n

n r n j r r j n

v v
v v P

A A  

   
     

     

 
      

   
 

since  0 1 ( 1) 0; 2( 1) 2 1 1 0.j r n r j n j n n j                 Therefore, theterms withj = 0 

and 2( 1)j n  drop out.  Hence 

2

22
2 2

1 1 0 1 2

0 0
1

1 0( ),1(2 2 ),2( )( , , )

 

n j

n
r n j r r j n

j r
n

n r n j r r j n

v v
v v P

A A A   

  
  
  

   

 
   

  
 

2( 1)

22( 1)
2( 1) 2 ( 1)

0 1 2

0 0
1 1

1 1 0( ),1(2( 1) 2 ),2( ( 1))( , , )

, (2.10)

n j

n
r n j r r j n

j r
n

n r n j r r j n

v v
v v P

A A  

   
     

     

 


      

   
 

with a leading 1.A  

 

 

Journal of the Nigerian Association of Mathematical Physics Volume 27 (July, 2014), 49 – 60 



58 

 

 

 

 

Interactions Amongst Determining…         Chukwunenye                    J of  NAMP 
 

 

2

22
2 2

0 1 0

0 0
1

1 0( ),1(2 2 ),2( )( , , )

 Finally,  

n j

n
r n j r r j n

j r
n

n r n j r r j n

v v
v v P

A A  

  
  
  

   

 
   

  
 

2 ( 2)

22( 1)
2 ( 2) 2 2

0 1 2

2 0
1

1 0( ),1(2 [ 2] 2 ),2( [ 2] )( , , )

n j

n
r n j r r j n

j r
n

n r n j r r j n

v v
v v P

A A  

   
     

     

 
     

   

 
2( 1)

22( 1)
2( 1) 2 ( 1) 1

0 1 2

2 0
1 1

1 0( ),1(2( 1) 2 ),2( [ 1] 1)( , , )

,

n j

n
r n j r r j n

j r
n

n r n j r r j n

v v
v v P

A A  

   
     

      

 


      

   
 

2( 1)

22( 1)
2( 1) 2 ( 1) 1

0 1 2

0 0
1 1

1 0( ),1(2( 1) 2 ),2( [ 1] 1)( , , )

,

n j

n
r n j r r j n

j r
n

n r n j r r j n

v v
v v P

A A  

   
     

      

 


      

   
 

since  0 1 ( 1) 1 1 0 

and 1 ( 1) 1 1 0. Hence the terms with {1,2} drop out.

j r n r j n

j r n r j n j

           

           

2

22
2 2

2 2 0 1 0

0 0
1

1 0( ),1(2 2 ),2( )( , , )

 Therefore,  

n j

n
r n j r r j n

j r
n

n r n j r r j n

v v
v v P

A A A   

  
  
  

   

 
   

  
 

1 1

2( 1)

22( 1)
2( 1) 2 ( 1)

0 1 2

0 0
1 1 0( ),1(2( 1) 2 ),2( ( 1))( , , )

, (2.11)
n

n j

n
r n j r r j n

j r
n r n j r r j n

v v
v v P

A A  


   
     

     

 
      

   
 

with a leading 2 .A  

0 1 2Add up the terms with leading , and  respectively to getA A A

1 10 1 2

0 0 0 1 1 0( ),1(2( 1) 2 ),2( ( 1))

2( 1)
1 22( 1)2

2( 1) 2 ( 1)

( , , )

, (2.12)
n

r

i i

i j r n r n j r r j n

n j
n n

n j r r j n

v v

v v P

A A A   


         

   
      

     




 
 
 
   

 
leading to the conclusion that the theorem is true for  k = n + 1 and hence true for every nonnegative integer  k. This 

completes the proof. 

See section lemma 2.4 of [8] for further explanation on ‘leading’ and ‘trailing’ permutation objects. 

Observe that the above theorem is independent of the expression for ( );kQ jh the j  above is justa dummy variable; we could 

just as well have used and j r , in place of and  j r respectively. 

 

3.0 Results and Discussions 

3.1 First Corollary to Theorem 2.4: Expressing ( )
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Q jh as A Sum of Partial Derivatives of
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This completes the proof of the corollary. 

Also, in view of theorems 3.1 and 3.2of [8], we can restate the above corollary in the equivalent forms: 

3.2 Second Corollary to thm. 2.4: ( )
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Q jh in three piece-wise sums of partials of
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For any nonnegative integers and ,j k  
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3.3 Third Corollary to thm. 2.4: ( )
k

Q jh in implicit piece-wise composite sum of partials form 

For any nonnegative integers and ,j k  
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  sgn(max{0, }) (3.6)k j

 
Proof 

The corollary follows by noting the following facts:   

(i) if ,sgn(max{0, }) 0, andsgn(max{0, 1 }) 1.j k k j j k       Then the expression for ( )kQ jh coincides 

with those of theorems 3.1 and 3.2 of  [8], for j k ,in view of corollary 3.1. 

(ii) if 0 ,  then 1 0 and 0.j k j k k j        Then the expression for ( )kQ jh  

coincides with that of theorem 3.1 of  [8], as the first component summations drop out. 

(iii) if 0 ,  then 1 0 and 0.k j j k k j        Then the expression for 
( )kQ jh

 

coincides with that of theorem 3.2of [8], as the second component summations drop out. 

 

4.0 Conclusion 
The results in this article attest to the fact that we have extended the previous single-delay result by[9], together with 

appropriate embellishments through the unfolding of intricate inter–play of the greatest integer function and the 

permutation objects.By using the permutation fact sheets in lemma 2.4 of [8], the greatest integer function analysis, change of 

variables technique and deft application of mathematical induction principles we were able to relate 2

0

k

i i

i

A


 
 
 


to 

permutation objects; then we appropriated this relationship to develop new structures for the determining matrices, 

involvingcertain partial derivatives of 2

0

k

i i

i

A


 
 
 


and permutations of 0, 1 and 2, which would pave the way for the 

establishing of equality of ranks of controllability matrices for finite and infinite horizons and hence the computational 

investigation of Euclidean controllability with respect to the double–delay control model.The mathematical icing on the cake 

was our deft application of the max and sgn functions and their composite function,sgn (max {.,.})in combination with the 

afore-mentioned partial derivatives, to obtain alternative expressions for determining matrices. Such applications are optimal, 

in the sense that they obviate the need for explicit piece–wise representations of those and many other discrete mathematical 

objects. 
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