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Abstract 
 

Approximate solution of a class of nth-order Initial value Problems (IVP’S) are 

considered, applying an Iterative Decomposition method. The method, which gives 

solution as rapidly convergent infinite series of easily computable terms requires no 

linearization or discretization. Some examples are presented to  establish the accuracy 

and efficiency of the proposed method. 
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1.0    Introduction 

Initial Value Problems of Higher Order Ordinary differential Equations occur in several mathematical models of problems in 

Physics, Engineering and Technology. In general, higher order initial value Problems are not easily solved [1,2]. It is possible 

to solve an nth-order IVP by reducing it to a system of first order IVP’S and applying any known method available for such 

problems [1, 2, 3, 4]. 

 However, it is quite desirable to provide direct numerical methods for solving nth-order IVP’s. 

 In this work, we consider a class of nth-order IVP’s of the form 

  

          txtxtxtxtftx nn 1111 ,...,),(,,   1
 

 Subject to the initial conditions 

  0 0 ,x t x  1 1

0 0 ,...x t x
     1 1

0 0 ,
n n

x t x
 

                       (2) 

Some recent direct numerical methods have been applied to solve    1 2 . For example, a variable step Runge-Kutta-

Nystrom method was applied in [2]. Furthermore, in [3] the semi-numeric multistage modified Adomian Decomposition 

Method was applied. In the same way, Homotopy methods have been applied to the same problems. For example, in [1] the 

applicability of the Homotopy Perturbation Method (HPM) for the solution of the nth-order IVP’s is demonstrated. In [5] the 

solutions were obtained by the Homotopy Analysis Method (HAM). 

These methods give favourable results, showing reliable convergence to exact solutions or the closed forms of the exact 

solutions in most cases. See Ref [6] for example. 

 The proposed method has been found to be accurate and efficient for some classes of Ordinary Differential 

equations. For example, in [7] the method was applied to solve the one-dimensional Biharmonic equation. The solution of 

Variational Problems was considered in [8] and in [9] Delay Differential Equations were considered. 

 In this paper, we apply the Iterative Decomposition Method to approximate the nth-order Initial Value Problems, 

directly. The major motivation for this work is the need for a solution technique, which can be applied with relative ease, 

requiring minimal mathematical rigour or details. The proposed algorithm presents the solutions in the form of rapidly 

convergent infinite series of easily computable terms. The organization of the rest of this paper is as follows:                                                                                  

In section 2, we present an analysis of the Iterative Decomposition Method for nth-order Initial Value problems. To present a 

clear overview of the method, we apply the algorithm developed in section 2 to some examples with known analytical 

solutions in section 3.  A conclusion is presented in section 4. 
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2.0 The Iterative Decomposition Method 
Consider the nth-order IVP 
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Where 0 , 1 , …, 1n   are given constants, and f is a continuous, real, linear or non linear function. Equation  3  can be 

written in the form 
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Where the differential operator L  is given as 
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 The operator L is assumed invertible and the inverse operator 
1L  .  is thus an n-fold integral operator defined by 

    dxdxdxL
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Operating the inverse operator 
 7

 on
 5

, it follows that 
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 The Iterative Decomposition Method assumes that the unknown function  y x  can be expressed in terms of an 

infinite series of the form  
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so that the components  
n

y x  can be determined iteratively. To convey the idea and for the sake of completeness of the 

iteration technique [7], we can see that  8  is of the form 
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Where k  is a constant and ( )N y  is the nonlinear term as  
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 From  9  and  11 ,  10  is equivalent to 
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are thus, 
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 The zeroth component  0y x  is defined through all terms that arise from the initial conditions  2 . 

 

3.0  Numerical Examples 
       To illustrate the efficiency and accuracy of the IDM, we shall consider some examples. 

   Example 3.1 

            Consider the nonlinear second order IVP [6] 
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Subject to the initial conditions 
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Then, ( )y t can be approximated as 
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Table 1: Table of Values for Example 3.1 
T Exact Solution Approximation solution IDM Error 

0.0 1.000000000 1.000000000 0 

0.1 1.182321557 1.182305976 1.558E-5 

0.2 1.336472237 1.336395817 7.642E-5 

0.3 1.470003629 1.469999417 4.412E-5 

0.4 1.587786665 1.581055472 3.712E-6 

0.5 1.693147181 1.693140181 7.00E-6 

0.6 1.78845736 1.78840336 5.40E-5 

0.7 1.875468737 1.87549471 2.597E-5 

0.8 1.955511445 1.95549447 1.696E-5 

0.9 2.029619417 2.029598161 2.126E-5 

1.0 2.098612289 2.098158217 2.54E-4 

 

Example 3.2 

Consider the linear fourth-order IVP [2] 
    115 4
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Then,  y t  can be approximated as 
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Table2: Table of Values for Example 3.2 
t Exact Solution Approximate Solution by IDM Error 

0.0 1.000000000 1.000000000 0 

0.1 1.000149612 1.000149612 0 

0.2 1.001055159 1.001055238 7.90E-8 

0.3 1.003069771 1.003071171 1.40E-6 

0.4 1.006092521 1.00610338 1.086E-5 

0.5 1.009572663 1.009626224 3.356E-5 

0.6 1.012535879 1.01273427 1.984E-4 

0.7 1.013631476 1.014234342 6.029E-4 

0.8 1.01119855 1.012783016 1.584E-3 

0.9 1.003348354 1.007074861 3.729E-3 

1.0 1.9880594438 0.9960868607 8.027E-3 

 

Example 3.3 

Consider the nonlinear fourth-order IVP 
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Thus,  y t  can be approximated as 
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Table3: Table of Values for Example 3.3 
t Exact Solution Approximate Solution by IDM Error 

0.0 0.000000000 0.000000000 0 

0.1 0.10517089181 0.1051709181 0 

0.2 0.2214027582 0.2214027582 0 

0.3 0.3498588076 0.3498588076 0 

0.4 0.4918246976 0.491824698 3.884E-10 

0.5 0.6487212707 0.6487212724 1.683E-9 

0.6 0.8221188004 0.822118804 3.584E-9 

0.7 1.013752707 1.013752701 6.406E-9 

0.8 1.225540926 1.225540828 9.836E-8 

0.9 1.459603111 1.459603321 1.01E-8 

1.0 1.718281828 1.718281801 2.70E-8 

 

4.0  Discussion and Conclusion 
In this work, an Iterative Decomposition Method has been applied to solve nth-Order Initial Value Problems. The method is 

quite easy to handle, and guarantees convergence of the approximate solution to the exact solution, even for very few terms 

of the approximating series. The numerical examples considered have illustrated the accuracy and efficiency of the method. 
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