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                       Abstract 
 

The theoretical study of gravitation is well known in the fields of massive 

bodies of perfect spherical geometry, based on the assumption that the Earth is a 

perfect sphere. But it is well known that the only reason for these restrictions is 

mathematical convenience and simplicity. The real fact of nature is that all 

rotating planets, stars and galaxies in the universe are spheroidal and the motions 

of test particles in their gravitational fields require the use of spheroidal 

coordinates. In this paper, we derive Newton’s equations of motion for test 

particles in Newton’s gravitational field of a static homogeneous prolate spheroidal 

distribution of mass to pave the way for the corresponding extension of the well-

known mechanics in spherical gravitational fields to spheroidal gravitational 

fields. 
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1.0    Introduction 
Newton’s theory of universal gravitation (TUG) was restricted almost exclusively to the fields of massive bodies of 

perfect spherical geometry. For example, in the solar system the motion of bodies (such as planets, comets and asteroids) are 

treated under the assumption that the sun is a perfect sphere. Also in the General Relativity Theory (GRT), the motion of 

bodies (such as planets) and particles (such as photons) are treated under the assumption that the sun is a perfect sphere 

(Schwarzschild’s space-time) [1]. The real fact of Nature is that all rotating stars and planets, and galaxies in the universe are 

spheroidal. It is obvious that their spheroidal geometry will have significant effects in the motions of all particles in their 

gravitational fields. These effects will exist in both Newtonian mechanics and in Einstein’s theory. In this paper, we hereby 

pave way for the solution of the equations of motion of test particles in the gravitational fields of prolate spheroidal bodies. 

 

2:0    Mathematical Analysis 
 Consider a homogeneous prolate spheroidal body of rest mass M0. Then the prolate spheroidal coordinates (η, ξ, ϕ) 

are defined in terms of the Cartesian coordinates (𝑥, 𝑦, 𝑧) by [2,3,4] 

𝑥 = 𝑎 (1 − 𝜂2)
1

2(𝜉2 − 1)
1

2 𝑐𝑜𝑠 𝜙        (1) 

 

𝑦 = 𝑎 (1 − 𝜂2)
1

2(𝜉2 − 1)
1

2 𝑠𝑖𝑛 𝜙          (2) 

𝑧 = 𝑎𝜂𝜉           (3) 

where a is a constant and  

0 < 𝜉 < ∞, −1 < 𝜂 < 1, 0 <  𝜙 < 2𝜋         (4) 

Also in the spheroidal coordinates, the surface of the spheroidal as given by 

𝜉 =  𝜉0             (5) 

where 𝜉0 is a constant. 

New if the body is homogeneous its density, ρ, is given by 

𝜌(𝑟) = 𝜌0 ;  𝜉 <  𝜉0          (6) 

and 

𝜌(𝑟) = 0 ;  𝜉 >  𝜉0                                                                                                                               (7) 
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where 𝜌0 is the constant density of rest mass. As it is well known, Newton’s gravitational field equation for the gravitational 

scalar potential 𝑓𝑔 due to a distribution of mass density 𝜌0 is given by 

     ∇2𝑓𝑔 = 4𝜋𝐺𝜌0                                 (8) 

where G is the universal gravitational constant. It follows from the explicit expression for the Laplacian operator in prolate 

spheroidal coordinates that the interior and exterior and gravitational scalar potentials, 𝑓− and 𝑓+ respectively satisfy the 

equations: 

4𝜋𝐺𝜌0 =  {
1

𝑎2(𝜉2 − 𝜂2)

𝜕

𝜕𝜂
[(1 − 𝜂2)

𝜕

𝜕𝜂
+

1

𝑎2(𝜉2 − 𝜂2)

𝜕

𝜕𝜉
[(𝜉2 − 1)

𝜕

𝜕𝜉
]

+
1

𝑎2

𝜕

𝜕𝜙
[

1

(1 − 𝜂2)(𝜉2 − 1)

𝜕

𝜕𝜙
]]} 𝑓−(𝜂, 𝜉, 𝜙)                                         (9) 

and 

   

0 =  {
1

𝑎2(𝜉2 − 𝜂2)

𝜕

𝜕𝜂
[(1 − 𝜂2)

𝜕

𝜕𝜂
+

1

𝑎2(𝜉2 − 𝜂2)

𝜕

𝜕𝜉
[(𝜉2 − 1)

𝜕

𝜕𝜉
]

+
1

𝑎2

𝜕

𝜕𝜙
[

1

(1 − 𝜂2)(𝜉2 − 1)

𝜕

𝜕𝜙
]]} 𝑓+(𝜂, 𝜉, 𝜙)                                               (10) 

By symmetry of a homogeneous prolate spheroidal distribution of the mass about the polar axis, the gravitational potential 

will be independent of coordinate ϕ. 

It follows that (9) and (10) are reduced to: 

4𝜋𝐺𝜌𝑜𝑎2(𝜉2 − 𝜂2) =
𝜕

𝜕𝜂
(1 − 𝜂2)

𝜕

𝜕𝜂
𝑓−(𝜂, 𝜉) +

𝜕

𝜕𝜉
(𝜉2 − 1)

𝜕

𝜕𝜉
𝑓−(𝜂, 𝜉)                         (11) 

and 

0 =
𝜕

𝜕𝜂
(1 − 𝜂2)

𝜕

𝜕𝜂
𝑓+(𝜂, 𝜉) +

𝜕

𝜕𝜉
(𝜉2 − 1)

𝜕

𝜕𝜉
𝑓+(𝜂, 𝜉)                                                           (12) 

General complementary solution of (11) is given as: 

𝑓𝑐
−(𝜂, 𝜉) = ∑[𝐴𝑙

−𝑃𝑙(𝜉) + 𝐵𝑙
−𝑄(𝜉)][𝐶𝑙

−𝑃𝑙(𝜂) + 𝐷𝑙
−𝑄(𝜂)]

∞

𝑙=0

                                                          (13) 

We seek particular solution of (11) as: 

𝑓𝜌
−(𝜂, 𝜉) = 𝐵 (𝜉2 + 𝜂2)                                                                                                                      (14) 

By using (13) in (10), we have 

𝐵 =
2

3
𝑎2𝜋𝐺𝜌0                                                                                                                                      (15) 

Hence general solution of (11) and (12) are given as: 

𝑓−(𝜂, 𝜉) = ∑[𝐴𝑙
−𝑃𝑙(𝜉) + 𝐵𝑙

−𝑄(𝜉)][𝐶𝑙
−𝑃𝑙(𝜂) + 𝐷𝑙

−𝑄𝑙(𝜂)]

∞

𝑙=0

+ 𝐵 (𝜉2 + 𝜂2)                         (16) 

and 

𝑓+(𝜂, 𝜉) = ∑[𝐴𝑙
+𝑃𝑙(𝜉) + 𝐵𝑙

+𝑄(𝜉)][𝐶𝑙
+𝑃𝑙(𝜂) + 𝐷𝑙

+𝑄𝑙(𝜂)]

∞

𝑙=0

                                                   (17) 

where 𝐴𝑙
−, 𝐵𝑙

−, 𝐶𝑙
−, 𝐷𝑙

− 𝑎𝑛𝑑 𝐴𝑙
+, 𝐵𝑙

+, 𝐶𝑙
+, 𝐷𝑙

+ are arbitrary constants, and 𝑃𝑙  and 𝑄𝑙  are the two linearly independent Legendre 

functions of order 𝑙 = 0, 1, 2, ….  
Now since the interior and exterior regions both contain the coordinate η=0, which is a singularity of 𝑄𝑙  we choose: 

   𝐷𝑙
− ≡  𝐷𝑙

+  ≡ 0; 𝑙 = 0, 1, 2, ….                                                                                                          (18) 

in the general solution of (16) and (17). Also, since ξ=0 is a singularity of 𝑄𝑙 we choose: 

𝐵𝑙
−  ≡ 0; 𝑙 = 0, 1, 2, …                                                                                                                        (19) 

Also, since 𝑃𝑙  is not defined for ξ ⟶∞ in the exterior region, we choose: 

𝐴𝑙
+  ≡ 0; 𝑙 = 0, 1, 2, …                                                                                                                        (20) 

It follows that (16) and (17) becomes: 

𝑓−(𝜂, 𝜉) = ∑[𝐴𝑙
−𝑃𝑙(𝜉)𝐶𝑙

−𝑃(𝜂)]

∞

𝑙=0

+ 𝐵 (𝜉2 + 𝜂2)                                                                                  

= ∑ 𝐴𝑙𝑃𝑙(𝜉)𝑃𝑙(𝜂)

∞

𝑙=0

 + 𝐵 (𝜉2 + 𝜂2)                                                                                              (21) 
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and 

𝑓+(𝜂, 𝜉) = ∑[𝐵𝑙
+𝑄𝑙(𝜉)𝐶𝑙

+𝑃𝑙(𝜂)]

∞

𝑙=0

= ∑ 𝐵𝑙𝑄(𝜉)𝑃𝑙(𝜂)

∞

𝑙=0

                                                        (22)  

where 𝐴𝑙  𝑎𝑛𝑑 𝐵𝑙  are arbitrary constants. Consequently by the conditions of the continuity of the potentials and their normal 

derivatives at the ξ =ξ0, boundary of the spheroid, it follows that: 

𝐴0 =
𝐵 [2 𝑄0(𝜉0)𝜉0 − (𝜉0

2 +
1
3

) 𝑄0
|
(𝜉0)]

𝑄0
|
(𝜉0)𝑃0(𝜉0) − 𝑄0(𝜉0)𝑃0

|
(𝜉0)

                                                                                     (23) 

  

𝐴2 =

2
3

𝐵𝑄0
|
(𝜉0)

𝑄2(𝜉0)𝑃2
|
(𝜉0) − 𝑃2(𝜉0) 𝑄2

|
(𝜉0)

                                                                                             (24) 

𝐴1 = 𝐵1 = 0                                                                                                                                         (25) 

𝐵0 =
𝐵 [2 𝑃0(𝜉0)𝜉0 − 𝑃0

|
(𝜉0)(𝜉0

2 +
1
3

)]

𝑄0
|
(𝜉0)𝑃0(𝜉0) − 𝑄0(𝜉)𝑃0

|
(𝜉0)

                                                                                          (26) 

𝐵2 =

2
3

𝐵𝑃2
|
(𝜉0)

𝑄2(𝜉0)𝑃2
|
(𝜉0) − 𝑃2(𝜉0)𝑄2

|
(𝜉0)

                                                                                               (27) 

and 

𝐴𝑙 = 𝐵𝑙  ; 𝑙 = 1, 3, 4, 5 ….                                                                                                                   (28) 

 

Consequently the final solutions are:                                          
𝑓−(𝜂, 𝜉) = 𝐴0𝑃0(𝜂)𝑃0(𝜉) + 𝐴2𝑃2(𝜂)𝑃2(𝜉) + 𝐵 (𝜉2 + 𝜂2)                                                 (29) 

and 

𝑓+(𝜂, 𝜉) = 𝐵0𝑃0(𝜂)𝑄0(𝜉) + 𝐵2𝑃2(𝜂)𝑄2(𝜉)                                                                             (30) 

These are the Newtonian interior and exterior gravitational scalar potentials of the prolate spheroidal in terms of its constant 

rest mass density 𝜌0 and surface coordinate 𝜉0 and parameter 𝑎. 

Newton’s equations of motion, in prolate spheroidal coordinates are defined as [5]: 

𝑎−(𝜂, 𝜉, 𝜙) = −∇𝑓−(𝜂, 𝜉, 𝜙)                                                                                                          (31) 

and                                                  

𝑎+(𝜂, 𝜉, 𝜙) =  −∇𝑓−(𝜂, 𝜉, 𝜙)                                                                                                     (32) 

where 𝑎 is the instantaneous acceleration in terms of prolate speroidal coordinates given as: 

𝑎 =  𝑎𝜂�̂� + 𝑎𝜉𝜉 + 𝑎𝜙�̂�                                                                                                                      (33) 

𝑎𝜂 =  𝑎 (
𝜉2 − 𝜂2

1 − 𝜂2
)

1
2

{�̈� +
2𝜉

𝜉2 − 𝜂2
�̇�𝜉̇ +

𝜂 (𝜉2 − 1)

(1 − 𝜂2)(𝜉2 − 𝜂2)
�̇�2 +

𝜂 (1 − 𝜂2)

(𝜉2 − 1)(𝜉2 − 𝜂2)
𝜉̇2

+
𝜂 (1 − 𝜂2)(𝜉2 − 1)

(𝜉2 − 𝜂2)
�̇�2} 𝜉                                                                                  (34) 

𝑎𝜉 =  𝑎 (
𝜉2 − 𝜂2

𝜉2 − 1
)

1
2

{𝜉̈ −
2𝜂

𝜉2 − 𝜂2
�̇�𝜉̇ −

𝜉 (𝜉2 − 1)

(1 − 𝜂2)(𝜉2 − 𝜂2)
�̇�2 −

𝜉 (1 − 𝜂2)

(𝜉2 − 1)(𝜉2 − 𝜂2)
𝜉̇2

−
 (𝜉2 − 1)(1 − 𝜂2)

(𝜉2 − 𝜂2)
�̇�2} 𝜉                                                                                     (35) 

and 

𝑎𝜙 =  𝑎[(1 − 𝜂2)(𝜉2 − 1)]
1
2 {�̈� −

2𝜂

(1 − 𝜂2)
�̇��̇� +

2𝜉

(𝜉2 − 1)
𝜉̇�̇�} �̂�                                        (36) 

Also, the del or nebla (∇) is expressed in terms of prolate spheroidal coordinates as[5]: 

∇(η, ξ, ϕ) =
η̂(1 − 𝜂2)

1
2

a(𝜉2 − 𝜂2)
1
2

𝜕

𝜕𝜂
+

ξ̂(𝜉2 − 1)
1
2

a(𝜉2 − 𝜂2)
1
2

𝜕

𝜕𝜉
+

ϕ̂

 𝑎[(1 − 𝜂2)(𝜉2 − 1)]
1
2

𝜕

𝜕𝜙
                     (37) 

Then  
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𝑎𝜂
− = −(∇f −)η  

 �̈� +
2𝜉

𝜉2 − 𝜂2
�̇�𝜉̇ +

𝜂 (𝜉2 − 1)

(1 − 𝜂2)(𝜉2 − 𝜂2)
�̇�2 +

𝜂 (1 − 𝜂2)

(𝜉2 − 1)(𝜉2 − 𝜂2)
𝜉̇2 +

𝜂 (1 − 𝜂2)(𝜉2 − 1)

𝜉2 − 𝜂2
𝜙2 + 𝜂(3𝐴2𝑃2(𝜉) + 2𝐵)

= 0                                                                                 (38) 

and 

𝑎𝜉
− = −(∇f −)ξ   

 𝜉̈ −
2𝜂

𝜉2 − 𝜂2
�̇�𝜉̇ −

𝜉 (𝜉2 − 1)

(1 − 𝜂2)(𝜉2 − 𝜂2)
�̇�2 −

𝜉 (1 − 𝜂2)

(𝜉2 − 1)(𝜉2 − 𝜂2)
𝜉̇2 −

𝜉 (𝜉2 − 1)(1 − 𝜂2)

𝜉2 − 𝜂2
�̇�2 + 𝐴0𝑄0

| (𝜉)

+
1

2
𝐴2(3𝜂2 − 1)𝑄2

| (𝜉) + 2𝐵𝜉  = 0                                            (39) 

𝑎𝜙
− = −(∇f −)ϕ  

�̈� −
2𝜂

1 − 𝜂2
𝜂 ̇ �̇� +

2𝜉 

𝜉2 − 1
𝜉 ̇ �̇� = 0                                                                                                  (40) 

𝑎𝜂
+ = −(∇f +)η  

 �̈� +
2𝜉

𝜉2 − 𝜂2
𝜂 ̇ 𝜉̇ +

𝜂 (𝜉2 − 1)

(1 − 𝜂2)(𝜉2 − 𝜂2)
�̇�2 +

𝜉 (1 − 𝜂2)

(𝜉2 − 1)(𝜉2 − 𝜂2)
𝜉̇2 +

𝜂 (1 − 𝜂2)(𝜉2 − 1)

𝜉2 − 𝜂2
�̇�2 + 𝐵2𝑄2(𝜉)𝜂  

= 0                                                                                                                                      (41) 

and 

𝑎𝜉
+ = −(∇f +)ξ   

 𝜉̈ −
2𝜂

𝜉2 − 𝜂2
�̇�𝜉̇ −

𝜉 (𝜉2 − 1)

(1 − 𝜂2)(𝜉2 − 𝜂2)
�̇�2 −

𝜉 (1 − 𝜂2)

(𝜉2 − 1)(𝜉2 − 𝜂2)
𝜉̇2 −

𝜉 (𝜉2 − 1)(1 − 𝜂2)

𝜉2 − 𝜂2
�̇�2 + 𝐵0𝑄0

| (𝜉)

+
1

2
𝐵2𝑄2

| (𝜉)(3𝜂2 − 1) = 0                                                                                       (42) 

𝑎𝜙
+ = −(∇f +)ϕ  

�̈� −
2𝜂

1 − 𝜂2
𝜂 ̇ �̇� +

2𝜉 

𝜉2 − 1
𝜉 ̇ �̇� = 0                                                                                             (43) 

We integrate (43) exactly to yield: 

�̇� =
𝐿

(1 − 𝜂2)(𝜉2 − 1)
                                                                                                               (44) 

where L is a constant. It follows that (41) and (42) becomes:  

�̈� +
2𝜉

𝜉2 − 𝜂2
𝜂 ̇ 𝜉̇ +

𝜂 (𝜉2 − 1)

(1 − 𝜂2)(𝜉2 − 𝜂2)
�̇�2 +

𝜂 (1 − 𝜂2)

(𝜉2 − 1)(𝜉2 − 𝜂2)
𝜉̇2 +

𝜂𝐿2

(1 − 𝜂2)(𝜉2 − 1)(𝜉2 − 𝜂2)
+  3𝐵2𝑄2(𝜉)𝜂

= 0                                   (45) 

and 

𝜉̈ −
2𝜂

𝜉2 − 𝜂2
𝜂 ̇ 𝜉̇ −

𝜉 (𝜉2 − 1)

(1 − 𝜂2)(𝜉2 − 𝜂2)
�̇�2 −

𝜉 (1 − 𝜂2)

(𝜉2 − 1)(𝜉2 − 𝜂2)
𝜉̇2 −

 𝜉𝐿2

(𝜉2 − 𝜂2)(1 − 𝜂2)(𝜉2 − 1)
+ 𝐵0𝑄0

| (𝜉)

+
1

2
𝐵2𝑄2

| (𝜉)(3𝜂2 − 1) = 0  (46) 

This is the completion of the equations of motion in prolate spheroidal coordinate system. 

 

3:0 Results and Discussion 
In this paper we derived the Newton’s equations of motion for the interior and exterior scalar gravitational potential in 

prolate spheroidal coordinate as (45) and (46) respectively. 

These equations (45) and (46) extend Newton’s theory of classical mechanics from the well-known pure spherical bodies 

to those of spheroidal bodies, and hence spheroidal effects. Consequently, we have pave way for the theoretical solution of 

these equations of motions for non-zero rest masses in the gravitational fields of spheroidal bodies, such as the planets and 

comets and asteroids in the solar system, and satellites in earth orbits. 

 

4.0 Conclusion 
Finally, the work in this paper is an excellent demonstration of an application in gravitation theory for orthogonal 

curvilinear coordinate system other than the usual Cartesian, cylindrical and spherical coordinates..     
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