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Abstract

The theoretical study of gravitation is well known in the fields of massive
bodies of perfect spherical geometry, based on the assumption that the Earth is a
perfect sphere. But it is well known that the only reason for these restrictions is
mathematical convenience and simplicity. The real fact of nature is that all
rotating planets, stars and galaxies in the universe are spheroidal and the motions
of test particles in their gravitational fields require the use of spheroidal
coordinates. In this paper, we derive Newton’s equations of motion for test
particles in Newton’s gravitational field of a static homogeneous prolate spheroidal
distribution of mass to pave the way for the corresponding extension of the well-
known mechanics in spherical gravitational fields to spheroidal gravitational

fields.
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1.0 Introduction

© J. of NAMP

Newton’s Equations of Motion for Particles of Non Zero Rest Masses in The Gravitational Field of
a Static Homogeneous Prolate Spheroidal Distribution of Mass

Newton’s theory of universal gravitation (TUG) was restricted almost exclusively to the fields of massive bodies of
perfect spherical geometry. For example, in the solar system the motion of bodies (such as planets, comets and asteroids) are
treated under the assumption that the sun is a perfect sphere. Also in the General Relativity Theory (GRT), the motion of
bodies (such as planets) and particles (such as photons) are treated under the assumption that the sun is a perfect sphere
(Schwarzschild’s space-time) [1]. The real fact of Nature is that all rotating stars and planets, and galaxies in the universe are
spheroidal. It is obvious that their spheroidal geometry will have significant effects in the motions of all particles in their
gravitational fields. These effects will exist in both Newtonian mechanics and in Einstein’s theory. In this paper, we hereby
pave way for the solution of the equations of motion of test particles in the gravitational fields of prolate spheroidal bodies.

2:0 Mathematical Analysis

Consider a homogeneous prolate spheroidal body of rest mass Mo. Then the prolate spheroidal coordinates (1, &, ¢)

are defined in terms of the Cartesian coordinates (x, y, z) by [2,3,4]

1 1
x=a(l-n*2(§*—1)2cos 1)
1 1
y=a(l-n*z2(*—-1)zsin¢ (2)
z=ané 3
where a is a constant and
0 <é<ow,-1<n<10< ¢p<2m (4)
Also in the spheroidal coordinates, the surface of the spheroidal as given by
§=4& Q)
where &, is a constant.
New if the body is homogeneous its density, p, is given by
p(M) =po; § < & (6)
and
p(r)=0;¢ > & @)
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where p, is the constant density of rest mass. As it is well known, Newton’s gravitational field equation for the gravitational
scalar potential f, due to a distribution of mass density p, is given by
szg = 47TGp0 (8)
where G is the universal gravitational constant. It follows from the explicit expression for the Laplacian operator in prolate
spheroidal coordinates that the interior and exterior and gravitational scalar potentials, f~ and f* respectively satisfy the
equations:

#1Gpy = || (=2 [ - Do
TGP = e - 2)677 a@—malt "V

aZ 39 [ma(p]l} & ¢) €)
and
0= {;i[(l — 772) 6 - - [(fz a
a*(§2 —n*)on az(fz n?) 0¢ ER
+ii[;—]l} Frm.69) (10)
a?dp L(1—n*)(§*—1) 9 !

By symmetry of a homogeneous prolate spheroidal distribution of the mass about the polar axis, the gravitational potential
will be independent of coordinate ¢.
It follows that (9) and (10) are reduced to

AnGp,a®(§* —n*) = —(1 - 2)—f .9 +6—(§_(éT2 - 1)6—51” .6 (11)
and
0=i(1—n2)if+(n $) + (52—1) =9 (12)
on an’ "7 a¢ a&” v
General complementary solution of (11) is given as:
12 @,8) = ) [ATPUE) + B Qo) [CT PG + D7 Q) (13)
We seek particular solution (l)?o(ll) as:
fo &) =B(&*+n?) (14)
By using (13) in (10), we have
B = %aznGpo (15)
Hence general solution of (11) and (12) are given as:
= @.8) = Y [47P@) + B Q) ICT PG + DF Q)] + B (62 + 1) (16)
and =
£, = Z[Ml(f) + B} Qo |G PiCp) + DI Qi) (7)

where A;,B;,C;,D; and Al ,Bl ,C;t, Dt are arbitrary constants, and P, and Q, are the two linearly independent Legendre
functions of order [ = 0,1, 2,.
Now since the interior and exterior regions both contain the coordinate =0, which is a singularity of Q, we choose:

Dr=Df=0;1=0,1,2,... (18)
in the general solution of (16) and (17). Also, since &=0 is a singularity of Q; we choose:
B =0;1=0,1,2,.. (19)
Also, since P, is not defined for & —oo in the exterior region, we choose:
Af =0;1=0,1,2, ... (20)

It follows that (16) and (17) becomes:

F@.8) = ) TP P +B € +17)
OO =0
DN IGLIORTIGETD 1)
1=
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and

0

@) = Y B A = Z&Q(é)ﬂ(n) (22)
=0
where A; and B, are arbitrary constants. Consequently by the conditions of the continuity of the potentials and their normal
derivatives at the £ =& boundary of the spheroid, it follows that:

B2 Qo(60)% — (£ +3) Qb(&0)]
AO = | | (23)
QL (E0)Po (o) — Qo(E)P) o)

2BOb (&)
= I I (24)
QZ(EO)PZ (50) - PZ(fO) Qz (60)
A, =B, =0 (25)
L _B[2REs - A& + Dl o6
P QP () — Qoo PY(60)
2BR)(&)
- | | 27)
Q2(§0)P; (§0) — P2(ey) Q2 (S0)
and
A, =B,;1=1,34,5.. (28)
Consequently the final solutions are:
’ f=(,8) = AgPo Py (&) + AP, ()P, () + B (§% +1n?) (29)
an
fT(m,§) = BoPo(m)Qo(§) + ByP,(1)Q2($) (30)

These are the Newtonian interior and exterior gravitational scalar potentials of the prolate spheroidal in terms of its constant
rest mass density p, and surface coordinate &, and parameter a.
Newton’s equations of motion, in prolate spheroidal coordinates are defined as [5]:

am,$¢)=-Vf~ (¢ ) (1)
and
Q(U' f! ¢) = —Vf_(T], f' ¢) (32)
where a is the instantaneous acceleration in terms of prolate speroidal coordinates given as:
a= ayf+ a;f + ad,(f) (33)
3 Ez—n“ 2§ . n@*-1 n(1-7
o (1—77 ) {“fzz—nzz”“(l—nzxfz—nZ)” MGENGEDY
n(A-n)¢" -1 .,],
MEGETD ‘1’2}5 ey
. za(fz—ﬁ>{€_ UV A Gt D B o D B
GV R nZ” Ca-mE-m @ -DE -
G —1)(1—77)-2}A ;
D) ¢ (< (35)
and
— 2 2 _ % 2n 9{
ap = al(l 1)) = DI (b~ s id + oy ) 6 (36)
Also, the del or nebla (g) is expressed in terms of prolate spher0|dal coordinates as[5]:
A — 127 0 2—1)z o ]
VN8 6) = il—n )1 & ) §+ ¢ L 37)
a(g2 — 227" a(f2 2)2 a1 -n®)(E* - D]z

Then
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a, = —(Vf),
L 28 nE-1 ., n-n?) ., n(@A-9HE*-1 ,
et tao e TEon@-pt T g 0 TIeARE I
=0 (38)
and
a; =—(Vf7);
. 2 . F@E-1n 0 {A-n) L, §@-DA-n) ., |
ot A=m@ =" @-DEe-n" g 0 T AG®
+54:(30% = DQ;() +2B§ =0 (39)
ay = =V,
i 2n .. 2¢ =0 40
b1t id= (40)
a = —(vf*),
L 28 n@*-1 §A-n%) ., n@-1)E-1) ,,
e et aome-p! te-ne-mt T eop ¢ RGO
=0 (41)
and
af = —(Vf*);
L . E@-D ., ia-m) L, E@E-Da-nd) |
e A==’ @-DE-nm" g ¢ THG®
+5 B0, 3"~ 1) =0 (42)
ah = —(VfH),
.. 2n . 28 L
b bt g9 =0 (43)
We integrate (43) exactly to yield:
. L
? S a—mE -1 i
where L is a constant. It follows that (41) and (42) becomes:
L 28 n@E*-1 n-n% nL?
e tae e TE-ne-p Ta-me-ne-p et
=0 (45)
and
.2 . E@-n , fa-my o, £12 |
o T aome-n! TE@-ne-n’  @-ma-me-n T he®

1
+5B:0,(O)30% — 1) = 0 (46)
This is the completion of the equations of motion in prolate spheroidal coordinate system.

3:0  Results and Discussion

In this paper we derived the Newton’s equations of motion for the interior and exterior scalar gravitational potential in
prolate spheroidal coordinate as (45) and (46) respectively.

These equations (45) and (46) extend Newton’s theory of classical mechanics from the well-known pure spherical bodies
to those of spheroidal bodies, and hence spheroidal effects. Consequently, we have pave way for the theoretical solution of
these equations of motions for non-zero rest masses in the gravitational fields of spheroidal bodies, such as the planets and
comets and asteroids in the solar system, and satellites in earth orbits.

4.0  Conclusion
Finally, the work in this paper is an excellent demonstration of an application in gravitation theory for orthogonal
curvilinear coordinate system other than the usual Cartesian, cylindrical and spherical coordinates..
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