Optimization of the Annealing Time and Temperature of n-Cu₂O/p-Cu₂S Solar Cell

Abdu Yunusa and Ibrahim I. Idowu

Bayero University, Kano

Abstract

Solar cells of n-Cu₂O/p-Cu₂S were fabricated. The n-Cu₂O layers were formed using Electroless chemical method which involved immersing of copper plates in 0.001M CuSO4 solution of pH 9.83, approximately. A uniform layer of n-Cu₂O was formed on the copper plates within 30 days in solution, later some of these samples were subjected to annealing treatment at various times and temperatures. This treatment was aimed at optimizing the annealing time and temperature. The annealed and unannealedn-Cu₂O samples were then immersed in 0.5M Na₂S solution to form the p-Cu₂S layer thereby creating the required n-Cu₂O/p-Cu₂S solar cell. Annealing treatment was also given to the n-Cu₂O/p-Cu₂S solar cell with annealedn-Cu₂O layer, to ascertain the stage at which the annealing treatment canimprove the performance of the cell better. The best results of open circuit voltage $V_{oc} = 60mV$, short circuit current density, $J_{sc} = 87.12\mu\text{Acm}^{-2}$ and a fill factor, ff = 0.52 were obtained for annealing of n-Cu₂O before and after sulphidation at temperature, T = 300°Cand time, t = 15minutes and temperature, T = 250°Cand time, t = 15minutes, respectively. These results are higher than previously reported experimental values for this solarcell.

Keywords: n-Cu₂O/p-Cu₂S solar cell, Electroless deposition, Annealing time and temperature

1.0 Introduction

Electrical power obtained through solar energy conversion, using photovoltaic (PV) solar cells is regarded the most promising alternative to the conventional energy sources. The conventional energy sources, mainly of fossil fuels, are fast being depleted through high demand despite the attendant consequences of their usage due to pollution. The use of the solar cell to augment the conventional sources is mainly based on their being, among other things, cost effective in areas where extending utility power line is very expensive, requiring little maintenance and production of electricity without polluting the environment. Photovoltaic cells that areused presently in commercial quantities are silicon pn-junction solar cells, cadmium sulphide/copper sulphide (CdS/Cu₂S), gallium arsenide (GaAs) and amorphous silicon (a-Si) solar cells. But the future development of these PV cells is predictably going to be lowered by high cost of material and fabrication methods. For large scale power generation using these cells, there should be a drastic reduction in the cost of the cells. One of the cheapest solar cells now being investigated worldwide are the Cu₂O-based solar cells due to the availability of the starting material which is copper, the material being non-toxic and having simple and cheap fabrication methods. In the past, n-type Cu_2O was not produced, since an approach to achieving n-type doping has not yet been fully developed. Without it, the early studies had to rely on Schottky junctions and p-n heterojunctions for photovoltaic devices. The p-n heterojunction solar cells have the highest electrical conversion efficiency of 3.83 % [1]. However, Fernando and Wetthasinghe[2] have reported the possibility of obtaining n-type photo- responses from clean copper plates, immersed in CuSO₄ solution for a few days. Subsequently, Fernando et al[3] reported the n-type Cu_2O produced by heating copper sheets in $CuSO_4$ solution. The formation of the ntype Cu_2O on copper surface, by heating copper sheets in $CuSO_4$ solution, can be explained by the following chemical reaction:

$$Cu^{2+} + Cu + H_2O \rightarrow Cu_2O + 2H^+$$
.....(1)

Another approach of producingn- Cu_2O was reported by Longchen and Meng[4], their experimental results showed thatboth pand n- Cu_2O formation can be achieved by varying solution pH. This enables p-type and n-type Cu_2O to be deposited

Journal of the Nigerian Association of Mathematical Physics Volume 26 (March, 2014), 486 – 489

Corresponding author: Abdu Yunusa, E-mail: yunusa_abdu@yahoo.com, Tel.: +2348061192954

Optimization of the Annealing Time... Abdu and Ibrahim J of NAMP

electrochemically in sequence to form a p-n homojunction of Cu_2O . However, the first homojunction solar cell of Cu_2O using the electrochemical method was made by Kunhee and Meng[5].

This work investigates the effect of annealing temperature and annealing time on the performance of $n-Cu_2O/p-Cu_2S$ solar cell. The fabrication of the cell was in accordance with the procedure reported by Abdu[6]. The motivation for this work is that the method is simple and the materials used are very cheap.

1.1 Experimental

2.1 Copper Preparation

A good quality Cu_2O material was obtained by first conditioning the copper surface according to an existing procedure [7]. This eliminates any grease or dirt from the surface of the copper foil. High purity copper sheets (0.1mm thickness, and 99.99% purity) were cut into samples of 2cm x 2cm size, and were then smoothened. The copper sheets were then washed in dilute nitric acid for about 20secs, and finally rinsed in deionized.

2.2 Solution Preparation

Anhydrous copper II sulphate of purity 99.0% (BDH-GPR), of molecular weight 159.60 was used to make $CuSO_4$ solution of 0.001M concentration. Adventurer Ohaus analytical balance was used to weigh the copper II sulphate and dissolved it in 1000 cm³ of distilled water.

2.3 Growth of Cu₂O Layers

The formation of the n-type Cu_2O layers was achieved according to the method reported by Abdu[6], which is based on the modification of the immersion methodearlier used by Fernando[2]. In this method 100 cm³ of the 0.001M CuSO₄ solution,pH = 5.5, was taken in a beaker in every trial, for uniformity of the deposition condition. The pH of the CuSO₄ solution was then adjusted to 9.83, and later copperplates were then placed into the solution and left for 30 days. This was done to achieve a uniform layer of the desired n-Cu₂O material. At the end of the stated number of days, the copper foils were removed and washed severally in deionized water and finally dried between tissue papers

2.4 Formation of p-Cu₂S Layer

To achieve the formation of the p-Cu₂S 0.05M Na₂S solution was used. The solution was prepared by weighing theNa₂S; using Adventurer Ohaus balance, and dissolved in 1 liter distilled water. Then the substrate, Cu/n-Cu₂O was immersed in the Na₂S solution for about 5-10 seconds and finally removed and dried in air.

2.5 Annealing

The Cu_2O and Cu_2S layers were given heat treatment according to report in the literature [8], this heat treatment is called annealing. The annealing process was performed to achieve the following objectives: healing defects created during layer formation, lowering the resistivity of the layers and improving on the grain size of the crystals. The Vecstar furnace heating chamber, model spch12 was used for the annealing process. Annealing at various times and temperatures were carried out to determine the point of optimum performance of the cell.

3.0 Results And Discusion

3.1 Formation of the n-Cu₂O Layer

At the expiration of the stated number of days in solution, the copper plates were noticed to have been covered by a uniform reddish-brown layer of the n-Cu₂O material. This n-Cu₂O formation resulted in the creation of Cu/n-Cu₂O structure. It was observed that only at pH of 9.83 that the Cu₂O layer was obtained, at any other pH value, from pH 5.5 and above, either a mixture of Cu₂O and cupric oxide, CuO was formed or pure CuO was formed [9]. The sample was removed and washed in deionized water and dried between tissue papers. Several other samples were produced in the same manner as described above (section 2.3). Some of the Cu/n-Cu₂O samples were later annealed at some selected times and temperatures as shown in Table 1.

3.2 Formation of the Cu₂S Layer

The formation of the Cu_2S is necessary because being a p-type material it is used with the n- Cu_2O material to form the heterojunction n- Cu_2O/p - Cu_2S solar cell. After the immersion in Na₂S, the surface of the n- Cu_2O appears black due to the formation of Cu_2S . The reaction predicted to have taken place [6] is:

 $Na_2S + H_2O + Cu_2O \rightarrow Cu_2S + 2NaOH$(2)

Journal of the Nigerian Association of Mathematical Physics Volume 26 (March, 2014), 486 – 489

Optimization of the Annealing Time... Abdu and Ibrahim J of NAMP

Some of the n- Cu_2O/p - Cu_2S solar cells formed were finally annealed. The various annealing timesand temperatures used were considerably low to avoid the formation of CuO on the Cu_2S layer, as reported by Varkey [10]. The annealing times and temperatures considered for the solar cells are presented in Table 1.

3.3 Measurement of Voc and Jsc for the n-Cu₂O/p-Cu₂S Solar Cells

After the annealing process, the open circuit voltage, V_{oc} and the short circuit current, J_{sc} of the n-Cu₂O/p-Cu₂S solar cells were measured. The values for V_{oc} and J_{sc} for all the cells considered are given in Table 2. It is clear from the results that annealing plays an important role towards improving the values of the V_{oc} and J_{sc} of the solar cell. The Unannealed cell A has low values of these parameters compared with those of B_1 down to C_3 . The values for cell sample C_4 appears to have over been annealed due to the annealing time used. The annealing time for the solar cell sample C_4 is a bit higher, and it appears to have affected the performance of the cell. The best result is that of cell sample C_1 , having V_{oc} and

 J_{sc} values 60mV and 87.12 μ Acm⁻², respectively. These values are better than for the cell reported in literature [6] having V_{oc} and J_{sc} value of 45mV and 75 μ Acm⁻², respectively. Generally, the results show that for better performance of the n-Cu₂O/p-Cu₂S solar cells the n-Cu₂O should be annealed first at 300°C for 15 minutes and when the cell is formed by the formation of the p-Cu₂S, the cell should again be annealed at 250 °C for 15 minutes.

3.4 The Current-Voltage (J-V) Characteristic of the n-Cu₂O/p-Cu₂S Solar Cell

The current-voltage, J-V characteristic of then-Cu₂O/p-Cu₂S solar cell sample C₁ under illumination, Fig. 1, was used to determine the maximum power point, P_M and the Fill Factor, ff. The values of P_M and the ff obtained are 2.72x10⁻⁶Wcm⁻² and 0.52, respectively. The Fill Factor was evaluated using equation (3):

$$FF = \frac{P_{\text{max}}}{J_{sc}V_{oc}} = \frac{V_{\text{max}}J_{\text{max}}}{J_{sc}V_{oc}}.$$
(3)

4.0 Conclusion

Generally, efficient solar cell should have high short circuit current density, J_{sc} , a high open circuit voltage, V_{oc} and a Fill Factor, ff, as close as possible to 1. Therefore, the n-Cu₂O/p-Cu₂Ssolar cell fabricated having values of the V_{oc} , J_{sc} and ff of 60mV, 87.12µAcm⁻² and 0.52, respectively is concluded to represent an improvement over previously reported experimental values of Jsc, Voc and ff of 75µAcm⁻², 45mV and 0.39, respectively [6]. Further work on this cell concerning optimum thickness and use of antireflection coating mayfurther improve the results presented in this work.

Cell Sample	Annealed Layer	Unannealed Layer	n-Cu ₂ O		n-Cu ₂ O/p-Cu ₂ S	
			Annealing Temp	Annealing Time	Annealing Temp	Annealing Time
A		n-Cu ₂ O n-Cu ₂ O/p-Cu ₂ S				
\mathbf{B}_1	n-Cu ₂ O	n-Cu ₂ O/p-Cu ₂ S	$300^{0}C$	30min		
\mathbf{B}_2	n-Cu ₂ O	n-Cu ₂ O/p-Cu ₂ S	$300^{0}C$	15min		
B_3	n-Cu ₂ O	n-Cu ₂ O/p-Cu ₂ S	$200^{\circ}C$	15min		
C_1	n-Cu ₂ O n-Cu ₂ O/p-Cu ₂ S		300°C	15min	250 ⁰ C	15min
C_2	n-Cu ₂ O n-Cu ₂ O/p-Cu ₂ S		300 ⁰ C	30min	200 ⁰ C	15min
C ₃	n-Cu ₂ O n-Cu ₂ O/p-Cu ₂ S		300 ⁰ C	15min	150 [°] C	15min
C_4	n-Cu ₂ O n-Cu ₂ O/p-Cu ₂ S		300 ⁰ C	35min	200 ⁰ C	15min

Table 1. Annealed la	vers and their	corresponding	times and te	mperatures

Optimization of the Annealing Time... Ab

Cell Sample V_{oc} (mV) Jsc (μ A/cm²) 20.3 37.77 \mathbf{B}_1 \mathbf{B}_{2} 40.5 45.20 24.5 42.4 B 60 87.12 47 72.35 74.88 58.9 4.8 20.81

Table 2. V_{oc} and J_{sc} values of the n-Cu₂O/p-Cu₂S solar cells under bright sunlight.

Fig. 1.The J-V characteristic of the n-Cu₂O/p-Cu₂S solar cell under bright Sunlight.

References

- [1] Minami, T., Nishi, Y., Miyata, T., and Nomoto, J; (2011): High efficiency Oxide Solar Cells with ZnO/ Cu₂O Heterojunction Fabricated on Thermally Oxidized Cu₂O Sheets. The Japan Society of Applied Physics, Vol. 4 (6)1-3
- [2] Fernando, C.A.N. and Wetthasinghe, S.K. (2000): Investigation of photoelectrochemical characteristics of n-type Cu2O Films. Solar Energy Materials and solar cells, 63: 299-308.
- [3] Fernando, C.A.N, de Silver, P.H.C. Wethasinha, S.K, Dharmadasa, I.M. Delsol, T. and Simmonds, M.C. (2002): Investigation of n-type Cu2O Layers Prepared by Low Cost Chemical Method for Use in Photovoltaic Thin Film Solar Cells. Renewable energy, 26: 521 – 529
- [4] Longcheng, W. and Meng, T. (2007): Fabrication and Characterization of p-n Homojunction in Cuprous Oxide by Electrochemical Deposition. Electrochemical and Solid State Letters, 10 (9): H248-H250
- [5] Kunhee, H, and Meng, T. (2009): Electrically Deposited p-n Homojunction Cuprous Oxide Solar cells. Solar Energy and Solar Cells, 93: 153-157
- [6] Abdu, Y.; (2011): Fabrication and Electrical Characterization of n- Cu₂O/p-Cu₂S Solar Cells. Bayero Journal of Physics and Mathematical Sciences. 4(1): 227-234.
- [7] Musa, A. O. Akomolafe, T. and Carter, M. J. (1998): Production of Cu₂O Solar Cell Material, by Thermal Oxidation and Study of its Physical and Electrical Properties. Solar Energy materials and solar cells, 51: 3-4.
- [8] Musa, A.O. (1995): Development of Thin Film Copper (I) Oxide for Backwall Schottky Barrier Solar Cells, Ph.D. Thesis, University of Ilorin, Nigeria.85-87, 185.
- [9] Yunusa, A., Musa, A. O. and Darma, T. H.; (2012): Electroless Deposition and Electrical Characterization of n- Cu₂O Layer. Bayero Journal of Pure and Applied Sciences. 5(2): 1-10.
- [10] Varkey, A.J.; (1990): Photovoltaic Effect of Chemically Deposited Cu_xS/C-Si Heterojunctions. Solar and Wind Technology, 5(619-621).

Journal of the Nigerian Association of Mathematical Physics Volume 26 (March, 2014), 486 – 489