
467

Journal of the Nigerian Association of Mathematical Physics

Volume26, (March, 2014), pp 467 – 475

© J. of NAMP

Formal Characterization of a Mobile Agent

Operational Environment

 Imianvan Anthony Agboizebeta
1
 and Akinyokun Oluwole Charles

2

1
Department of Computer Science,

University of Benin, Benin City. Nigeria.
2
Department of Computer Science

Federal University of Technology, Akure. Nigeria

Abstract

The resources of computer networks are vast. For the purpose of developing a

mobile agent for computer networks, proper specification of the computer network

resources cannot be undermined. The aim of this paper is to produce a framework for

the assessment and evaluation of computer network resources using mobile agent

technology with formal specification of the network resources. The detail specification

of the resources of the network is provided using Formal Method (Zed notations). The

proposed system provides takeoff point for mobile agent developers.

 Keywords: Mobile Agent, Formal Specification, Zed notations, Computer Network, Schema

1.0 Introduction
A computer network is a group of computers connected together and separated by physical distance. Over the ages, searching

for resources in a network often involves physical movement of the network administrator from one machine to another. The

approach was not only stressful but introduces some delays in monitoring events on the network. Besides, events on the

network were not monitored as they arise and network administrators were bored with the issue of which computer to

monitor next. There was therefore a need to have intelligent software that would autonomously search for and interact with

network resources on the network administrators‟ behalf. A mobile agent is such intelligent software [1].

Mobile agents are autonomous and intelligent programs that are capable of moving through a network, searching for and

interacting with the resources on behalf of the network administrator. Mobile agent is an executive program that can migrate

at times of its own choosing from one machine to another in a network [1, 2]. Mobile agent technology has been applied to

electronic commerce transactions [3], distributed information retrieval [4], and network management [5].

 Network management is a means to effectively deploy and coordinate network resources. That is, it helps to plan,

administer, analyze, evaluate, design and expand communication networks to meet demands at all times, at reasonable cost

and optimum capacity. Effective network management will require monitoring and controlling the resources of the network.

The assessment and evaluation of network resources are thus crucial part of network management [1].

Mobile agent could be activated and launched from one computer to another for the purpose of autonomously searching

for and interacting with network resources on the network administrator‟s behalf. Conscious efforts at developing a mobile

agent for the assessment and evaluation of computer networks include [1,2]. This research attempts to identify the resources

of computer networks and then specifies those resources using formal methods (Zed notations) in order to enhance the

development of expert system using mobile agent technology for the assessment of those resources.

2.0 Formal Specification
A specification written and approved in accordance with established (mathematical) notations is a formal specification. Z

(„zed‟), for instance is a formal notation based on set algebra and predicate calculus for the specification of computing

systems. Z specification of systems employs the power of discrete mathematics. Formal methods are becoming more

accepted in both academia and industry as one possible way in which to help improve the quality of both software and

systems. Note however that formal method is not a panacea, but one more weapon in the armoury against making design

mistakes. The Z notation is useful to organize and communicate thoughts within a design team [6].

Corresponding author: Imianvan Anthony Agboizebeta, E-mail: tonyvanni@yahoo.com, Tel.: +2347069742552

Journal of the Nigerian Association of Mathematical Physics Volume 26 (March, 2014), 467 – 475

468

Formal Characterization of a Mobile… Imianvan and Akinyokun J of NAMP

Since a formal specification is precise, if such a specification is wrong, it is easier to tell where it is wrong and correct it.

Using a formal notation increases the understanding of the operation of a system especially early in a design. It helps to

organize the thoughts of a designer, making clearer, simpler designs possible. Formal specification provides a check that the

system will behave as expected by the designer. The use of formal methods can help to explore design choices. Such methods

aid the design team in reasoning about the operations of the system in clear terms before and during its implementation [7].

Z uses various conventions to identify particular types of schema and state variables used in operation specification:

a. If any variable name, N, is followed by , for example N, this means that it represents the value of the state

variable N after the operation. In Z terminology, N is decorated with a dash.

b. If a schema name is decorated with , this introduces the dashed values of all names defined in the specification

together with the invariant applying to these values.

c. If a variable name is decorated with , this means that it is an output, for example, „message!‟.

d. If a variable name is decorated with ? , this means that it is an input, for example „amount?‟.

e. If a schema name is prefixed with Xi (), this means that dashed versions of the variable defined in the named

schema are introduced. For all variable names introduced in the schema, the values of corresponding dashed

names are the same. That is, the values of state variables are not changed by the operation.

f. If a schema name is prefixed with the Greek character Delta (), this implies that the values of one or more

state variables will be changed by the operation where that schema is introduced. For all variable names

introduced in such named schema, corresponding dashed names are also introduced and may be referenced in

operations.

3.0 Design of a Mobile Agent
The mobile agent environment is presented in Figure 1. The environment is characterized by server machine, which

connects to a number of workstations. Therefore, there are two categories of environment. First, is the server machine

environment, which is composed of some hardware devices such as main and secondary memory, high duty printer,

specialized printers, scanners, switches, modems, and network ports. There are also some categories of software such as

operating system, front-end software, back-end software and utility software. Second, is the workstation environment which,

is comprised of some hardware devices and software systems of, perhaps, lesser capacity than that of the server machine

environment.

Figure 1: Mobile Agent Environment.

A mobile agent is multi dimensional and can be launched from any workstation or server machine to survey the state of the

resources in any other workstation or server in the computer network environment. Thus, there is a source and one or more

targets of a mobile agent.

The architecture of the mobile agent is conceptualized in Figure 2. The architecture is composed of back-end and front-end

engine. The back-end engine is made up of the server machine and workstations which are considered to be static. The front-

end is the software-based interface which constitutes the mobile agent and is dynamic and mobile in nature. In this research,

the following mobile sub-agents are considered.

Journal of the Nigerian Association of Mathematical Physics Volume 26 (March, 2014), 467 – 475

469

Formal Characterization of a Mobile… Imianvan and Akinyokun J of NAMP

a. Bandwidth evaluator.

b. Memory evaluator.

c. Response time evaluator.

d. Files evaluator.

e. Input-Output device evaluator.

Each of the resources of a computer network environment has unique features; hence the evaluation of each resource can

be developed by a unique model.

Figure 2: Architecture of the Mobile Agent.

The detail design of the mobile agent with respect to each computer network resource is presented hereafter. It is noted that

there is a source of take off of a mobile agent which is considered to be the server machine and two or more target

workstation. The platform for the takeoff of the mobile agent at the source and the platform for its landing at the target

computer are the operating system. For clarity, the architecture in simplified form is presented in Figure 3. At the source, the

mobile agent is decomposed into its constituent parts. Each subagent will interacts with the host operating system of the

target and its appendages or utility programs for network monitor and cyber clock for the purpose of assessing and evaluating

the resources that are available. The results obtained by all the subagents after a successful visit to a set of target workstations

are assembled for the purpose of reporting them for external analysis, interpretation, policy formulation and decision making.

Journal of the Nigerian Association of Mathematical Physics Volume 26 (March, 2014), 467 – 475

SOURCE

MOBILE AGENT

T

A

R

G

ET

S

Server

WS4 • •

•

W
o

rk
st

at
io

n
s

WS1 WS2 WS3 WSN

ASSEMBLER

DIS-ASSEMBLER

 Bandwidth Memory

Space
Response

Time

Files Input-Output

Device

470

Formal Characterization of a Mobile… Imianvan and Akinyokun J of NAMP

 Server Workstations

Figure 3: Design of the Evaluators.

a. Bandwidth Assessor and Evaluator

Reference Figure 3, the resource that is being considered in this instance is the bandwidth. The design has three major

components, namely: input, bandwidth evaluator and output report. The input to the bandwidth evaluator is the target

machine identity and the number of workstations. The platform for its take off is the host operating system of the server

machine, while the platform for assessment and evaluation at the target is the operating system of the target workstation. The

medium of transmission between the source and target machine is a cable. The evaluator gets into the files of the target

operating system to collect relevant information desirable for estimating the bandwidth used in the target workstation for a

given transmission time. The bandwidth evaluator generates report on the packets transmitted, size of each packet,

transmission time, used bandwidth within the transmission time and percentage of the used bandwidth. The used bandwidth

in the computer network environment denoted by „B‟ is evaluated by:

 n m

B = ∑ ∑ bi, j

/ tj

 - - - - - - - - - - - - - - - - - - - - (1)

 i=1 j=1

where bi,j represents the bandwidth used in transmitting jth packet in ith workstation and tj is the transmission time of jth

packet. The percentage of the used bandwidth (Bu) to the bandwidth subscribed (Bs) to by the computer network environment

denoted by „P‟ is evaluated as:

P = 100Bu/Bs

- - - - - - - - - - - - - - - - - - - - (2)

The formal specification of the logic of bandwidth evaluation using Z Schema notation is presented in Figure 4 as

follows:

BandwidthEvaluator

NumberofPackets?, NumberofWorkstations? :

PacketSize, TargetPacketSize? :

TransmissionTime, TargetTime? :

BandwidthUsed, BandwidthUsed′ :

 i, j, m, n :

BandwidthSubcribed, BandwidthPercentage :

BandwidthUsed ← 0

 n ← NumberofWorkstations?

m ← NumberofPackets?

,i
 1 ≤ i ≤ n /* loop over workstations or targets */ {

,j

 1 ≤ j ≤ m /* loop over packets transmitted in ith workstation*/ {

 PacketSize ←TargetPacketSize? ; TransmissionTime ← TargetTime?

 BandwidthUsed′ ← BandwidthUsed + (PacketSize / TransmissionTime)

 DisplayData (PacketSize, TransmissionTime, BandwidthUsed) } }

 BandwidthPercentage ← (BandwidthUsed′ / BandwidthSubcribed) * 100

 DisplayData (BandwidthUsed′, BandwidthSubcribed, BandwidthPercentage)

Figure 4: Formal Specification of Bandwidth Evaluator

Journal of the Nigerian Association of Mathematical Physics Volume 26 (March, 2014), 467 – 475

 :

 :

w1

w2

wn

Resource

Evaluator

471

Formal Characterization of a Mobile… Imianvan and Akinyokun J of NAMP

b. Memory Assessor and Evaluator

The memory evaluator gets into the files of the target operating system to collect relevant information desirable for

estimating the memory used by packets in the target workstation in a given transmission time. The memory evaluator

generates report on the packet size, memory used, period of usage, subscribed memory, and percentage of memory used. The

primary or secondary memory of a target computer used over a period of time „t‟ denoted by „R‟ is evaluated by:

 n m

R = ∑ ∑ ri, j

- - - - - - - - - - - - - - - - - - - - (3)

 i=1 j=1

where ri,j represents the primary or secondary memory space used by the jth packet in the ith

workstation. The percentage

of the used memory denoted by „Pr‟ is evaluated as: Pr = 100Ru/Rw

where Rw represents the memory size of the target computer and Ru represents the memory size used by the packets. The

formal specification of the logic of memory evaluation using Z Schema notation is presented in Figure 5 as follows:

MemoryEvaluator

NumberofPackets?, NumberofWorkstations? :

PacketSize, TargetPacketSize? :

TimeFrame, TargetPeriodofMemoryusage? :

Memoryused, Memoryused′ :

i, j, m, n :

SubcribedMemory, PercentageMemoryused :

 TotalMemoryused ← 0

 n ←NumberofWorkstations?

 m ←NumberofPackets?

,i
 1 ≤ i ≤ n /* loop over workstations */ {

,j

 1 ≤ j ≤ m /* loop over the packets transmitted in ith workstation */ {

 PacketSize ←TargetPacketSize?

 TimeFrame ← TargetPeriodofMemoryusage?

 Memoryused′ ← Memoryused + (PacketSize / TimeFrame)

 DisplayData (PacketSize, MemoryUsed, TimeFrame) } }

 PercentageMemoryused ← (Memoryused′ / SubcribedMemory) * 100

 DisplayData (Memoryused′, SubcribedMemory, PercentageMemoryused)

Figure 5: Formal Specification of Memory Evaluator

 c. Response Time Assessor and Evaluator

The response time evaluator gets into the files of the target operating system to collect relevant information desirable for

estimating the response time used in the target workstation for a given packet transmitted. The response time evaluator

generates report on the packets transmitted, queuing delay (the time packet need to wait before transmission), packet

propagation time (time required to transmit a packet through the network), the processing delay, and the destination delay.

The response time of all the transmitted packets in the computer network environment denoted by „Τ‟ is evaluated by:

 n m

T = ∑ ∑ ti, j

/ r

- - - - - - - - - - - - - - - - - - - - (4)

 i=1 j=1

where ti,j = qi, j + gi, j + pi, j + di, j represents the packet delays used for the jth packet in the ith

 workstation and „r‟ is the

number of packets.

 j = 1,2,…,m (number of packets recorded in the target at period t).

 i = 1, 2,...n (number of targets).

qi, j = Queuing delay time.

 gi, j = Packet propagation time.

 pi, j = Processing delay time.

 di, j = Destination delay time.

The formal specification of the logic of response time evaluation using Z Schema notation is presented in Figure 6 as

follows:

Journal of the Nigerian Association of Mathematical Physics Volume 26 (March, 2014), 467 – 475

472

Formal Characterization of a Mobile… Imianvan and Akinyokun J of NAMP

 ResponseTimeEvaluator

NumberofPackets?, NumberofWorkstations? :

QueuingDelay?, Propagationdelay? , Processingdelay?, DestinationDelay? :

ResponseTime, SumofWaitingandDelay, SumofWaitingandDelay′ :

p, g, d, q : array[1..m, 1..n] of

i, j, m, n :

 SumofWaitingandDelay ← 0

 n ← NumberofWorkstations?

 m ← NumberofPackets?

,i
 1 ≤ i ≤ n /* loop over workstations */

{

,j

 1 ≤ j ≤ m /* loop over packets transmitted in the ith workstation */

 {

 pi, j ← Processingdelay?

 qi, j ← QueuingDelay?

 gi, j ← Propagationdelay?

 di, j ← DestinationDelay?

 SumofWaitingandDelay′ ← SumofWaitingandDelay + (pi, j + qi, j + gi, j + di, j)

 DisplayData (pi, j, qi, j, gi, j, di, j)

 }

 ResponseTime ← SumofWaitingandDelay′ / m

 DisplayData (SumofWaitingandDelay′, ResponseTime)

 }

 DisplayData (ResponseTime)

Figure 6: Formal Specification of Response Time Evaluator

d. Files Assessor and Evaluator

Journal of the Nigerian Association of Mathematical Physics Volume 26 (March, 2014), 467 – 475

473

Formal Characterization of a Mobile… Imianvan and Akinyokun J of NAMP

FilesEvaluator

 Target_id?, NumberofWorkstations?, NumberofFiles? :

 DriveLabel : CHAR

 DirectoryName, FileName, FileCategory : seq CHAR

 ReportDriveLabel!, ReportDirectoryName!: WINDOW

, ReportFileName!, ReportFileCount! : WINDOW

 i, j, m, n, count, TotalFileCount :

n ← NumberofWorkstations?

m ← NumberofFiles?

count ← 0

,i
 1 ≤ i ≤ n /* loop over workstations */

 {

,j

 1 ≤ j ≤ m /* loop over number of files */

 {

 ReportDriveLabel!← DISPLAY (DriveLabel);

 ReportDirectoryName! ← DISPLAY (DirectoryName)

 ReportFileName! ← DISPLAY (FileName)

 count′ ← count + 1

ba,

 : FilesEvaluator • a ≠ b a. DriveLabel ≠ b. DriveLabel

dc,

 : FilesEvaluator • c ≠ d c. DirectoryName ≠ d. DirectoryName

fe,

 : FilesEvaluator • e ≠ f e. FileName ≠ f.FileName

:, hg

 FilesEvaluator • g ≠ h g. FileCategory ≠ h.FileCategory }

 TotalFileCount′ ← TotalFileCount + count′ };

 ReportFileCount! ← DISPLAY (TotalFileCount′)

Figure 7: Formal Specification of Files Evaluator

The formal specification of the logic of assessing files using Z Schema notation is presented in Figure 7 above. The file

evaluator gets into the files of the target operating system to collect relevant information desirable for estimating files in use

in the target workstation. Files evaluator generates report on the filename(s), directory / folder name, file size, count of the

number and category of files available.

Journal of the Nigerian Association of Mathematical Physics Volume 26 (March, 2014), 467 – 475

474

Formal Characterization of a Mobile… Imianvan and Akinyokun J of NAMP

e. Input-Output (I-O) Device Assessor and Evaluator

The evaluator gets into the files of the target operating system to collect relevant information desirable for estimating I-O

device in use in the target workstation. I-O device evaluator generates report on device name, device makes, and device

identity.

The formal specification of the logic of assessing I-O devices using Z Schema notation is presented in Figure 8 as

follows:

I-ODeviceEvaluator

 i, n : ; Target_id?, NumberofWorkstations? :

 I-ODeviceName, I-ODeviceMake, I-ODeviceIdentity : seq CHAR

 ReportDeviceName!, ReportDeviceMake!, ReportDeviceIdentity! : WINDOW

 n ← NumberofWorkstations? ;

,i
 1 ≤ i ≤ n /* loop over workstations */ {

 ReportDeviceName! ← DISPLAY (I-ODeviceName)

 ReportDeviceMake! ← DISPLAY (I-ODeviceMake)

 ReportDeviceIdentity! ← DISPLAY (I-ODeviceIdentity)

ba,

 : I-ODeviceEvaluator • a ≠ b a. I-ODeviceName ≠ b.I-ODeviceName

dc,

 : I-ODeviceEvaluator • c ≠ d c. I-ODeviceMake ≠ d.I-ODeviceMake

fe,

 : I-ODeviceEvaluator • e ≠ f e. I-ODeviceIdentity ≠ f.I-ODeviceIdentity }

Figure 8: Formal Specification of Input-Output Device Evaluator

4. Creation of the Mobile Agent

This involves developing the mobile agent functionality and then adding it to the universal set of agent. At this point, the

agent implementation code is loaded, made executable and set for launching. The detail design of the CREATE procedure of

the mobile agent system is presented in Figure 9 as follows:

 Agent

 AgentName : seq CHAR

 a, b : Agent a ≠ b a.AgentName ≠ b.AgentName

 Create_Agent

 AgentSet, AgentSet : Agent

 NewAgent? : Agent

 NewAgent? AgentSet

 k : AgentSet k.AgentName ≠ NewAgent?.AgentName

 AgentSet = AgentSet (NewAgent?)

Figure 9: CREATE Agent Procedure

The disassembling of the mobile agent into subagents is achieved using the interaction presented in Figure 10 whereas

the assembling of the agent after execution is accomplished as presented in Figure 11.

 Disassemble (Agent, SubAgent, n)

 AgentSet : Agent

 S : array[1..n] of AgentSet

 i, j : 1..n

 disjoint_ : (i Agent)

 Partition : (i Agent) Agent

 S : i Agent; T : Agent

 (disjoint S i, j : dom S i j S(i) S(j) =)

 (S Partition T disjoint S U { i : dom S S (i)} = T)

Figure 10: Disassembling of the Agent

Journal of the Nigerian Association of Mathematical Physics Volume 26 (March, 2014), 467 – 475

475

Formal Characterization of a Mobile… Imianvan and Akinyokun J of NAMP

 ASSEMBLE(SubAgent, n, Agent)

 Agent ::= BandwidthEvaluator MemoryEvaluator ResponseTimeEvaluator

 FilesEvaluator I-ODeviceEvaluator

 AgentSet, AgentSet
/
 : Agent

 SubAgent : array[1..n] of AgentSet

 i : 1..n

 SubAgent : i Agent

 AgentSet
/
 AgentSet {SubAgent(i)}

Figure 11: Assembling of the Agent

Finally, the process of the mobile agent disposal is presented in Figure 12.

 DisposeAgent

 AgentSet, AgentSet : Agent

 Remove? : Agent

 Remove? Agentset

 1 k : Agentset k.AgentName = Remove?.AgentName

 AgentSet
/
 = AgentSet \ {Remove?}

Figure 12: Disposal of the Agent

5.0 Conclusion

The architecture of the mobile agent is presented. A modular architecture is proposed whereby each network resource is

administered by a subagent called evaluator. The logic of each of the subagents is depicted. The input requirements and

output reports for the evaluators are identified and specified. A formal specification method that relies on set notations and

discrete mathematics called Z (Zed) notations is used to present the logic of the subagents. Finally, creation, disassembling

and assembling as well as disposal schema of the mobile agent system were also provided. Mobile agent developers could

use the formal specification using Zed notations provided in this paper as basis for takeoff.

References
[1]. Imianvan Anthony Agboizebeta (2009), “Development of a Mobile Agent System for Evaluating the Use of

Bandwidth in a Computer Network”, PhD Thesis, Federal University of Technology, Akure, Ondo State. Nigeria.

[2]. Aderounmu G. A. (2001), “Development of an intelligent Mobile Agent for Computer Network Performance

Management”, PhD Thesis, Obafemi awolowo University, Ile-Ife, Nigeria.

[3]. Weina He and Gaoyuan Liu (2011), The application of mobile agent in e-commerce, 3
rd

 International Conference on

Advanced Computer Control (ICACC), 2011, HARBIN.

[4]. Djamel Eddine Menacer, Habiba Drias, Christophe Sibertin-Blanc (2012), MP-IR: Market-Oriented Mobile Agents

System for Distributed Information Retrieval, Advances in Intelligent and Soft Computing, Volume 122, pages 379-

390, 2012.

[5] Huy Hoang To, Shonali Krishnaswamy, and Bala Srinivasan (2005), Mobile Agents for Network Management:

When and When Not! , ACM Syposium on Applied Computing.

[6]. Diller A., (1994), Z : An Introduction to Formal Methods, (2nd edition), John Wiley and Sons

[7]. Spivey J. M. (1998), “The Z notation: A Reference Manual”, Prentice Hall International, United Kingdom.

Journal of the Nigerian Association of Mathematical Physics Volume 26 (March, 2014), 467 – 475

