
388 

 

Journal of the Nigerian Association of Mathematical Physics 

Volume26, (March, 2014), pp 388 – 393 

© J. of NAMP 

 

Memetic Algorithm with Multi-Parent Crossover (MA-MPC) for  

Multi-Objective Network Design 
 

R. O. Oladele
1
 and O. T. Oladele

2
 

 
 

1
Department of Computer Science, University of Ilorin 

P.M.B. 1515, Ilorin, Nigeria. 
2
Department of Computer Science, Federal University of Technology 

P. M. B. 704, Akure, Nigeria. 
 

Abstract 
 

In many Evolutionary Algorithms (EAs), a crossover with two parents is commonly 

used to produce offsprings. Interestingly, we need not restrict ourselves to two-parent 

crossover since EA allows us to emulate natural evolution in a more flexible fashion. 

There are experimental results in the literature which show that multi-parent crossover 

operators can achieve better performance than traditional two-parent versions. 

However, most of these experimental results are based on common test functions. 

Experimental studies involving real-life, NP-hard problems such as network design 

problem are very rare. This paper presents Memetic Algorithm with Multi-Parent 

Crossover (MA-MPC) with a view to providing a case study of multi-parent crossover 

within the framework of MA for network topology design problem. Results show that 

MA-MPC does not always outperform MA. It depends on the size of the problem and the 

number parents (be it 3, 5, 7, or any other). 

 

  

 Keywords:  Evolutionary Algorithms, Multi-Parent Crossover, NP-hard problems, Memetic Algorithm,  

 network design 

 

1.0    Introduction 
Memetic Algorithm (MA) isknown to be one of the highly effective meta-heuristic approaches for solving a large 

number of constraint satisfaction and optimization problems [1]. One of the key features of a MA is the crossover operator 

for generating offspring solutions. Generally, meaningful crossover operators enhance healthy diversification in the 

population and prevent premature convergence of the population.In many Evolutionary Algorithms (EAs), a crossover 

operation with two parents is commonly used to produce offsprings. However, we need not restrict ourselves to two-parent 

crossover only as EAs allows us to emulate natural evolution in a more flexible fashion. Several attempts studying the use of 

more than two parents for crossover in EAs have been reported [1, 2, 3,4]. In fact, there are experimental results in the 

literature which show that multi-parent crossover operators can achieve better performance than their two-parent 

versions.Elsayed et al [5] showed that the efficiency of genetic algorithm (GA) can be enhanced by using multi-parent 

crossover with a randomized operator.  Ting and Buning [6] proposed a tabumulti-parent genetic algorithm (TMPGA) and 

observed from their computational experiments that TMPGA achieved faster convergence and better solution quality than the 

classic two-parent GA. Eiben [7, 8 ] provides excellent overview of multi-parent crossovers. These researchers and a host of 

others havedemonstrated the effectiveness of multi-parent crossoverson functionaloptimization problems as well as multi-

objective problems. However, computational experiments involving, real-life, NP-hard problems such as network design 

problem are very rare. 

In this paper, we provide a case study of (diagonal) multi-parent crossover operatorwithin memetic algorithm for multi-

objective network design problem. 

 

 

 

 

Corresponding author: R. O. Oladele E-mail: roladele@yahoo.com, Tel.: +2347064203812 

 

Journal of the Nigerian Association of Mathematical Physics Volume 26 (March, 2014), 388 – 393   

mailto:roladele@yahoo.com


389 

 

Memetic Algorithm with Multi-Parent…         Oladele and Oladele      J of  NAMP 
 

1.1 Problem Formulation 
We consider a multi-objective network design problem of the form: 

Minimize          ( )     (   ( )   ( )     (1) 

Subject to:                     (2) 

                      ( )                                                                                                       (3) 

Where: 

   (             )     is the decision vector 

   (        )      is the objective vector 

  ( ) is the cost function of the configuration   

  ( ) is the average delay on all the links in the configuration   

        refers to the traffic flowing along link  (   ) 

      is the capacity of link (   ) 

 ( ) is the reliability of the configuration   

   is the minimum acceptable reliability (    = 0.95) 

The reliability calculation is done via Monte Carlo simulations. 

Other network design parameters used are the followings: 

N denotes the total number of nodes in the network 

    denotes the physical distance between every pair of nodes   and   

    represents the cost of the link between nodes  and   

  is the cost of network equipment at node   
    is selection status of link (   ) :     = 1 if link (   ) is selected, else     = 0 

L    = maximum distance for which the signal is sustained without amplification (We fix L = 15km) 

A   = cost of each amplifier unit(#6.00) 

Poisson process was used to model the traffic delay 

The objective functions; network cost and average delay are approximated by the following formulation. 

i Network Cost: 

                                                     (4) 

Where; 

          ∑              (5) 

           ∑ ∑               (6) 

         
∑ ∑           

 
         (7) 

 

ii Average Delay: 

          
∑ ∑                    

∑ ∑          
                     (8) 

         
 

               
                      (9) 

        = 0 if there is no link between nodes   and   

         =     if the network cannot handle the traffic load with the existing links’ capacities and routing policy. 

The constraints are: 

i. Flow constraints which can be expressed as: 

           ≤                                       (10) 

 and 

ii. Reliability constraint which can be stated as: 

 R(x)   ≥                         (11) 

Monte Carlo Simulation is used to estimate network reliability. The network is simulated t times, given the design and 

the links’ reliabilities. The method is outlined below. 

 

initialize i = 0, c= 0 

Step C0: while i < t Repeat. 

Step C1: Randomly generate network 

     (a): i = i + 1. 

Step C2: Check to see if the network forms a spanning tree 

     (a): if YES, increment c by 1 and go to Step C0 

     (b): if NO, go to Step C0 

Step C3: R(x) = c / t. 

Journal of the Nigerian Association of Mathematical Physics Volume 26 (March, 2014), 388 – 393   



390 

 

Memetic Algorithm with Multi-Parent…         Oladele and Oladele      J of  NAMP 
 

Breadth First Search (BFS) is used for routing. The metric used for this purpose is the length of the link. The following 

assumptions were made in the problem formulation 

The location of each network node is given 

Each     is fixed and known 

Each link is bidirectional i.e. a path can be traversed in either direction 

There is no redundant link in the network 

 

2.0 Algorithm design and Implementation Details 

2.1 MA-MPC 
The template of MA-MPC used in this paper is as follows: 

1   Initialization:  generate a population of N chromosomes 

2    Fitness: calculate the fitness of each chromosome 

3   Create a new population: 

 a.  Selection: select   chromosomes from the population (   ) 

 b.  Crossover: produce   offsprings from the  selected chromosomes 

 c.  Local Search: apply local search to each offspring  

 d.  Mutation: perform mutation on each offspring. 

 e.   Local search: apply local search to each offspring. 

4   Replace: replace the current population with the new population 

5   Evaluation: compute the objective vector of each chromosome   

6   Termination: Test if the termination condition is satisfied. If so stop.  If not, go to step 2 

 

2.2 Implementation Details 
This presents relevant details concerning the implementation of MA-MPC 

 

3.0 Encoding Scheme 
The chosen encoding scheme is such that every chromosome codes a possible network, which corresponds to an individual in 

a set of feasible solutions of the problem. This set of feasible solutions constitutes a population. The chromosome is 

represented by a constant length integer string representation. The chromosome consists of two parts, the first part contains 

details of NE’s at the nodes and the second part consists of details of the links.  For example, if there are H types of nodes, 

then log 2 H bits are required to encode a node. Therefore the first part of the chromosome consists of   N .log 2 H bits, where 

N is the number of nodes in the network.  If a link exists between nodes 1 and 2 then the first bit position in the link part is set 

to 1. Hence the second part of the chromosome consists of (N (N-1))/2 bits.  

 

3.1 Initial Population 
The two algorithms start by creating an initial population. There are two ways of generating initial population namely 

heuristic process and random process. A random process of generating initial population is adopted.  

 

3.2 Fitness Evaluation 
Fitness of a chromosome is evaluated based on principle of Pareto ranking. Pareto-rank of each individual is equal to one 

more than the number of individuals dominating it. All non-dominated individuals are assigned rank one. Network cost and 

average delay are used to evaluate the rank of an individual chromosome using the principle of Pareto dominance. The fitness 

of an individual as defined in [9] is given by  

         
 

                        (12) 

 

3.3 Selection 
Roulette Wheel Selection Process is used. In roulette wheel, individuals are selected with a probability that is directly 

proportional to their fitness values i.e. an individual’s selection corresponds to a portion of a roulette wheel. The probabilities 

of selecting a parent can be seen as spinning a roulette wheel with the size of the segment for each parent being proportional 

to its fitness. Obviously, those with the largest fitness (i.e. largest segment sizes) have more probability of being chosen. The 

fittest individual occupies the largest segment, whereas the least fit have correspondingly smaller segment within the roulette 

wheel. The circumference of the roulette wheel is the sum of all fitness values of the individuals. The proportional roulette 

wheel algorithm procedure is depicted by the algorithm below. Let              be fitness values of individuals 1, 2, 

………n. Then the selection probability,   , for an individual  , is given as 

             
  

∑   
 
   

                                                                                                                      (13) 

Journal of the Nigerian Association of Mathematical Physics Volume 26 (March, 2014), 388 – 393   



391 

 

Memetic Algorithm with Multi-Parent…         Oladele and Oladele      J of  NAMP 

The template of the roulette wheel selection procedure is shown below.  

Procedure: Roulette Wheel Selection 

while  population size < pop_size do 

generate pop_size random number r 

calculate cumulative fitness, total fitness (  ) and sum of proportional      fitness (sum) 

Spin the wheel pop_size times 

if sum < r  then 

select the first chromosome 

else 

select the jth chromosome 

Endif 

Endwhile 

return chromosomes with fitness values proportional to the size of the selected wheel section 

End Procedure 

 

3.4 Crossover 
This operation operates on two(or more) chromosomes. In particular, for MA-MPC we used 3, 5 and 7 chromosomes. To 

provide a basis for evaluating MA-MPC we also implemented crossover using 2 chromosomes, that is, traditional MA. The 

chromosomes are randomly selected based on the probability of crossover which is a randomly generated number ranging 

between 0 and 10. In this work, two-point crossover technique was implemented. The crossover probability (denoted by pC) 

is the probability of the number of offsprings produced in each generation to the population size (denoted by popSize). This 

probability controls the expected number (pC × popSize) of chromosomes to undergo the crossover operation. A high 

crossover probability is used here to allow exploration of more of the solution space, and reduces the chances of settling for a 

false optimum; but if this probability is too high, it results in the wastage of a lot of computation time in exploring 

unpromising regions of the solution space. 

 

3.5 Mutation 
This is the operation of randomly changing some of the bits of the chromosome representing an individual with a view to 

increasing the exploration of the solution space. 

 

3.6 Local Search  
The local search technique used is the hill climbing search algorithm. It is essentially an iteration that continuously proceeds 

in the direction of increasing quality value. The algorithm is as shown below 

While (termination condition is not satisfied) do 

New solution ← neighbours(Best solution); 

If new solution is better than actual solution then 

Best solution ← actual solution 

End if 

End while 

 

4.0  Computational Results And Discussion 
In this section, results of numerical experiments using 3 test problems - 10-node network design problem, 21-node network 

design problem and 36-node network design problem (See Appendix) are reported. All experiments were performed on a HP 

630 NOTEBOOK PC with the following configuration:2.13GHz Processor Speed, 3.0GB RAM and 64 BIT OS and the 

implementation language is java. 

For MA-MPC, a total of 18 simulation runs were carried out for the 3 test problems (6 runs per problem instance, 2 runs 

per multi-parent instance implementation), noting the pareto-optimal front. For MA (crossover using 2 chromosomes), a total 

of 18 simulation runs were equally carried out, noting the pareto-optimal front. The algorithms were implemented with the 

following parameters: 

Population size - 100 (250 for 36-node network design problem) 

Mutation probability – 0.02 

Number of parents 3, 5, 7 

Number of Node Type – 4 

The worst-ranked results (out of the pareto-optimal front) of MA and MA-MPC (3, 5 and 7 parents) are extracted and 

then re-ranked among the extracted results as shown in tables 1 to 3. Where two different results tie, the average of the two 

results is recorded.  

 

 

Journal of the Nigerian Association of Mathematical Physics Volume 26 (March, 2014), 388 – 393   



392 

 

Memetic Algorithm with Multi-Parent…         Oladele and Oladele      J of  NAMP 

For 10-node network, it is evident from Table 1 that the use of multi-parent crossover will always enhance the efficiency of 

MA since MA has the highest CPU time (410 seconds). It could also be observed that quality of results is either degraded as 

it is the case with MA-MPC with 3 and 5 parents or not affected at all by multi-parent crossover as it is the case with MA-

MPC with 7 parents. 

For 21-node network, Table 2 shows that multi-parent crossover will reduce computation time of MA whenever it is 

used. Results quality is however either reduced or left unaffected by multi-parent crossover. 

In the case 36-node network, Table 3 depicts that multi-parent crossover can either improve or impede the efficiency of 

MA depending on the number of parents involved. Results also reveal that when the efficiency of MA is improved owing to 

the use of multi-parent crossover, its effectiveness is equally hampered and vice versa. The table also shows that multi-parent 

crossover will either improve solution quality as it is the case with MA-MPC (with 5 parents) or degrade solution quality as it 

is the case with MA-MPC (with 3 and 7 parents)  

 

5.0  Conclusion 
In this paper, the impact of multi-parent crossover on a Memetic Algorithm applied to solve real-life problem is investigated. 

In particular, MA-MPC is designed and tested for a multi-objective network design problem whose size ranges from small 

(10-none network), medium (21-node network) to large (36-node network). The results obtained show that, while multi-

parent crossover will certainly improve the efficiency of MA for small and medium networks, it is not the case for large 

networks. For large networks, multi-parent crossover will either improve or impede the efficiency of MA depending on the 

number of parents used. 

 

6.0 Acknowledgments  
Many thanks to Hammed Sanusi for programming assistance. 

 

Table 1: Table of Results for 10-node network problem 

 

 

 

 

 

 

 

Table 2: Table of Results for 21-node network problem 

Number of Parents Cost AvDelay Rank CPU Time 

2 (MA) 1167.4 0.04 1 5665 

3 1354.3 0.07 4 2899 

5 1293.8 0.03 1 5390 

7 1350.4 0.03 2 990 

 

Table 3: Table of Results for 36-node network problem 

Number of Parents Cost AvDelay Rank CPU Time 

2 (MA) 1167.4 0.05 2 5673 

3 1258.9 0.055 3 4744 

5 1163.8 0.04 1 6455 

7 1350.4 0.06 4 990 

 

APPENDIX 

TEST DATA 

 

10-NODE NETWORK 

Node Details (Node Type,   ) =  { (01,42) ,(0, 78) ,(10,33) ,(00,53) ,(01,42) ,(00,13) ,(10,9) ,(11,23) ,(10,57) ,(10,25) }  

Link Details (   ,                   ) = { (28,47,60,46) ,(20,43,90,72) ,(28,12,54,28) ,(62,39,61,46) ,(42,23,24,9) 

,(42,30,16,14),(36,3,44,16) ,(40,18,75,54) ,(10,36,29,8) ,(44,30,79,53) ,(44,45,54,35) ,(36,18,66,51) ,(32,13,78,25) 

,(14,16,96,54) ,(16,13, 84,74) ,(21,28,76,17) ,(22,3,80,71) ,(3,39,55,54) ,(47,12,66,62) ,(26,11,89,56) ,(13,42,77,47) 

,(46,22,45,39) ,(28,6,53,16) ,(5,38,89,57) ,(28,40,16, 9) ,(48,49,49,40) ,(18,34,37,9) ,(34,35,11,8),(11,41,39,31) ,(46,20,32,9) 

,(11,3,50,35) ,(70,1,54,41) ,(18,6,8,65) ,(35,42,91,66) ,(14,33,10,26) ,(11,33,60,9) ,(43,16,79,49) ,(20,43,88,56) 

,(16,13,96,68) ,(6,30,91,67) ,(34,49,16,7) ,(37,21,57,49) ,(20,12,79,62) ,(33,46,81,70) ,(48,25,8,7)  } 

 

Journal of the Nigerian Association of Mathematical Physics Volume 26 (March, 2014), 388 – 393   

Number of Parents Cost AvDelay Rank CPU Time 

2 (MA) 619.6 0.05 1 410 

3 934.9 0.045 3 150 

5 758 0.03 2 142 

7 689.6 0.03 1 185 



393 

 

Memetic Algorithm with Multi-Parent…         Oladele and Oladele      J of  NAMP 

 

21-NODE NETWORK 

Node Details = { (01,42) ,(01,78) ,(10,33) ,(00,53) ,(01,42) ,(00,13) ,(10,9) ,(11,23) ,(10,57) ,(10,25) ,(01,53) ,(00,55) 

,(01,11) ,(00,34) ,(10,33) ,(00,32) ,(01,51) ,(10,38) , (10,15) ,(10,57) } 

Link Details = { (29 20 87 74) , (4 15 75 43) , (13 47 50 35) , (41 16 69 52) , (32 25 72 54) , (43 42 89 63) , (31 1 75 21) , (29 

38 76 70) , (1 33 39 11) , (16 37 59 56) , (30 44 70 42) , (6 47 89 77) , (10 12 81 18) , (30 6 66 37) ,(26 3 80 54) ,(17 45 98 

33) ,(12 10 49 39) ,(32 9 61 31) ,(6 45 35 24) ,(14 42 67 24) ,(19 10 89 31) ,(6 31 73 28) ,(31 19 29 22) ,(12 21 80 3) ,(49 35 

60 13) ,(15 30 95 39) ,(15 3 29 9) ,(4 2 82 64) ,(26 27 27 12) ,(24 42 57 2) ,(25 46 68 66) ,(23 18 47 14) ,(5 28 94 65) ,(30  18 

44 26) ,(7 18 78 59) ,(20 44 80 38) ,(33 29 30 7) ,(18 10 99 5) ,(25 43 18 2) ,(30 30 94 13) ,(0 26 82 46) ,(22 0 87 52) ,(40 6 

63 15) ,(10 41 46 3) ,(25 45 35 10) ,(15 22 35 56) ,(46 28 32 5) ,(13 8 31 47) ,(17 18 29 35) ,(5 24 89 70) ,(36 25 90 76) ,( 32 

20 94 75) ,(40 34 84 73) ,(7 29 94 53) ,(39 35 33 21) ,(37 42 57 4) ,(43 41 71 60) ,(20 28 85 45) ,(36 17 51 19) ,(22 19 83 48) 

,(44 17 28 19),(36 37 40 19) ,(32 36 40 14) ,(4 12 88 78) ,(32 47 88 8) ,(48 19 27 7) ,(26 7 73 60) ,(28 13 32 1) ,(20 21 47 19) 

,(41 28 84 54) ,(30 28 78 66) ,(20 38 92 67) ,(21 27 88 27) ,(37 21 63 56) ,(27 22 57 35) ,(3 48 39 38) ,(20 32 62 56) ,(17 33 

74 60) ,(41 24 60 14) ,(11 4 93 44) ,(20 44 75 74) ,(49 30 73 52) ,(39 16 64 57) ,(12 40 62 54) ,(33 16 12 70) ,(43 20 83 48)  

,(0 16 93 71) ,(23 29 40 8) ,(2 35 81 36) ,(11 38 78 62) ,(7 11 93 63) ,(0 33 94 74) ,(9 48 88 54) ,(9 46 86 69) ,(15 44 87 32) 

,(12 18 51 43) ,(16 24 79 43) ,(28 8 68 7) ,(41 49 67 27) ,(29 24 78 60) ,(48 5 63 12) ,(18 22 23 1) ,(22 31 17 7) ,(14 45 58  4) 

,(3 45 73 64) ,(16 28 89 71) ,(5 8 59 26) ,(16 49 65 50) ,(6 25 39 9) ,(48 35 76 73) ,(1 30 35 63) ,(19 29 82 34) ,(35 27 57 20) 

,(43 10 73 70) ,(17 28 25 15) ,(44 30 14 3) ,(5 20 63 12) ,(19 40 46 59) ,(8 30 82 50) ,(7 9 5 54) ,(7 10 74 66) ,(30 14 18 5 5) 

,(7 5 83 15) ,(30 33 69 64) ,(15 10 64 61) ,(33 11 14 2) ,(18 31 79 75) ,(2 38 66 0) ,(47 0 29 17) ,(20 29 52 48) ,(46 38 10 4) 

,(5 45 75 40) ,(39 17 83 66) ,(18 3 94 4) ,(30 25 60 43) ,(31 32 84 71) ,(34 45 74 74) ,(5 19 68 42) ,(27 48 72 69) ,(13 6 45  

33) ,(20 17 37 23) ,(41 26 97 30) ,(34 42 54 22) ,(5 42 63 47) ,(39 26 71 47) ,(18 28 20 15) ,(18 4 70 10) ,(16 12 87 32) ,(1 13 

97 11) ,(27 39 71 62) ,(41 14 94 59) ,(1 33 63 57) ,(12 2 70 43) ,(37 4 77 51) ,(25 16 85 21) ,(8 17 40 25) ,(6 11 87 42) ,(48 

47 97 21) ,(28 39 42 21) ,(18 21 19 15) ,(46 12 99 51) ,(1 27 99 76) ,(8 31 21 11) ,(6 13 91 36) ,(27 17 69 21) ,(18 16 80 38) 

,(42 20 92 19) ,(38 33 66 33) ,(47 5 57 27) ,(39 3 45 19) ,(30 4 88 78) ,(39 14 60 30) ,(28 40 92 41) ,(2 48 63 22) ,(17 10 8 3 

42) ,(30 17 71 50) ,(14 20 66 79) ,(10 27 83 65) ,(43 27 89 40) ,(5 2 97 78) ,(8 13 67 57) ,(42 21 68 47) ,(5 20 84 23) ,(41 28 

61 51) ,(41 38 70 31) ,(8 48 80 59) ,(9 10 97 25) ,(40 38 86 55) ,(31 20 65 60) ,(39 39 41 40) ,(22 40 95 77) ,(44 16 72 56) 

,(21 45 88 53) ,(29 2 74 37) ,(21 45 60 40) ,(4 37 37 7) ,(12 43 48 38) ,(3 43 63 48) ,(46 25 63 43) ,(4 31 53 51) ,(18 9 70 22) 

,(47 9 76 70) ,(38 13 75 44) ,(20 49 83 52) ,(21 15 90 25) ,(9 45 66 49) ,(42 40 55 0) ,(1 37 80 27) ,(40 8 88 28) ,(9 27 73 38) 

} 

 

 

7.0 References 
[1] Lu, Z., Hao, J. K., Glover, F.: A study of memetic search with multi-parent crossover for UBQP. In: Cowling, P., 

Merz, P. (eds.) EvoCOP 2010. LNCS, vol. 6022, pp.154–165. Springer, 2010 

[2] Eiben, A. E, Back, T., Empirical Investigation of Multiparent Recombination Operators in Evolution Strategies. 

Evolutionary Computation, 5(3), pp. 347-365, 1997. 

[3] Palubeckis, G., Multistart tabu search strategies for the unconstrained binary quadratic optimization problem. Annals 

of Operations Research 131, 259–282, 2004. 

[4] Ting, C. K., Design and analysis of multi-parent genetic algorithms, PhD Thesis, University of Paderborn, 2005. 

[5] Elsayed, S., Sarker, R.  and Essam, D., "GA with a New Multi-Parent Crossover for Solving IEEE-CEC2011 

Competition Problems", in Proc. Congress on Evolutionary Computation, pp. 1034 - 1040, New Orleans, June 2011 

[6] Ting, C. K., Buning, H. K., A Mating Strategy for Multi-parent Genetic Algorithms by Integrating Tabu Search. 

inProc. Congress on Evolutionary Computation, vol. 2, pp. 1259 - 1266, 2003 

 

[7] Eiben, A. E., “Multiparent recombination,” Evolutionary Computation 1: Basic Algorithms and Operators, pp. 289-

307, Institute of Physics Publishing, 2000. 

[8] Eiben, A. E., “Multiparent recombination in evolutionary computing,” Advances in EvolutionaryComputing, Natural 

Computing Series, Springer, 2002. 

[9] Banerjee, N, Kumar, R., “Multiobjective network design for realistic traffic models”, In Proceedings of GECCO ‘07, 

pp. 1904-1911, 2007  

 

 

 

 

 

 

 

Journal of the Nigerian Association of Mathematical Physics Volume 26 (March, 2014), 388 - 393  

 


