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Abstract 
 

Exact test of significance can only be guaranteed by the use of the distribution of a 

test statistic resulting from an exhaustive enumeration of all the distinct permutations of 

the observations in an experiment, especially when threshold p-values are involved.  The 

permutation paradigm requires no distributional assumptions and works well with 

values that are normal, almost normal and non-normally distributed.  Under the truth of 

the null hypothesis, permutation test only requires exchangeability of observations 

either within pairs, between samples, or within blocks.  This paper examines empirically 

the permutation distribution of the observations in an experiment in the context of 

exchangeability within blocks as applicable to two-way repeated measures analysis of 

variance.  The methodology developed in this paper enumerates all the distinct 

permutations of the observations or ranks of observations in an experiment and is 

illustratively applied to the Friedman test statistic.  The Friedman test is used to detect 

differences in treatments across multiple test attempts and only requires exchangeability 

(or, if variances differ, compound symmetry) and the ability to rank the data.  The exact 

distribution of the Friedman test statistic for small samples is therefore generated 

empirically, leading to the production of exact critical values at different levels of 

significance. 
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1.0    Introduction 

A major problem of statistical inference is how to obtain an exact test of significance when the form of the underlying 

probability distribution is unknown.  The idea of a general method of dealing with this problem of obtaining an exact test of 

significance originated from Fisher [1].  Descriptions of the permutation test for the difference between means for a two-

sample problem were first presented by Fisher [1].  The essential feature of the permutation method is that all the distinct 

permutations of the observations are considered with each permutation equally likely under the hypothesis to be tested.  An 

exact test at the level of significance   is constructed by choosing a proportion,  , of the permutation space as the critical 

region.  Scheffe [2] demonstrates that the permutation approach is the only possible method of truly constructing exact tests 

of significance. 

 Permutation tests have received attention under the guise of bootstrap [3], Bayesian and likelihood [4, 5], etc.  All 

these approaches for obtaining the probability distribution of a test statistic have gained prominence due to the fact that they 

are computationally less demanding than the permutation approach.  This was a major concern of Fisher [6] that “the 

statistician does not carry out this very simple and very tedious process, but his conclusions have no justification beyond the 

fact that they agree with those which could have been arrived at by this elementary method”.  Ernst [7] believes that today, 

with fast computers, there is little reason for the statistician not to carry out this “very tedious process”.  In the last three 

decades, statisticians have tried to evolve the underlying theory of permutation tests due to their wide range of application 

and elegance, simply put by Good [8] thus: “Permutation tests permit us to choose the test statistic best suited to the task at 

hand.  This freedom of choice opens up a thousand practical applications, including many which are beyond the reach of 

conventional parametric statistics.  Flexible, robust in the face of missing data and violations of assumptions, the  
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permutation test is among the most powerful of statistical procedures.  Through sample size reduction, permutation tests can 

reduce the costs of experiments and surveys”. 

 In this paper, consideration is given to the exhaustive permutation of the observations or ranks of the observations in 

a multi-sample experiment as relevant to two-way repeated measures ANOVA and illustratively applied to the Friedman test 

statistic.  The Friedman test is used to detect differences in treatments across multiple test attempts and only requires 

exchangeability (or, if variances differ, compound symmetry) and the ability to rank the data. 

 The motivation for this paper stems from the problems highlighted in the literature [1, 8, 9 – 17], viz.: computational 

difficulties of permutation test, non-availability of a methodology for an exhaustive permutation enumeration, non-

availability of exact statistical tables for some test statistics, and the fact that the probability of a type I error is not exactly α 

for several entries in statistical tables in common use. 

 Fisher analyzed Charles Darwin's data of 1878 [18] on the height of cross and self-fertilized Zea mays plants [19], 

was tested using the paired t-test and the exact permutation test.  Interestingly, at 5% level of significance, the null hypothesis 

of no significant difference is accepted under the exact permutation distribution (p = 0.05267) while the null hypothesis is 

rejected under the paired t-distribution (p = 0.04970).  This observation was also made in [20] and it buttresses the fact that 

the use of exact p-values is important, especially when threshold p-values are involved.  Permutation test can therefore serve 

as an independent check on the classical methods in common use, as observed by Fisher [6].  It is only by deciding to accept 

or reject the null hypothesis on the basis of an exact p-value that one is guaranteed to be protected from type I error at the 

desired significance level.  As a practical matter, of course it is not possible to use exact p-values all the time.  It is difficult to 

quantify just how large a data set can be solved by the exact algorithms, because that depends on so many factors other than 

just the sample size.  The type of exact test, the degree of imbalance in the allocation of subjects to treatments, the number of 

rows and columns in a cross-tabulation, and a variety of other factors interact in complicated ways in determining if a 

particular data set is amenable to exact inference. 

 

2.0 Exhaustive Permutation Procedures 

The process of obtaining the permutations starts by choosing the test statistic T and the acceptable significance level  . Let 


1, 


2, …,  N be a set of all distinct permutations of the observations or ranks of the observations in the experiment.  

Compute the test statistic Ti for permutation i , that is, Ti = T( i ).  Construct an empirical cumulative distribution for T. 

0p
 = 
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Under the empirical distribution, if 
0p

, reject the null hypothesis. 

 

2.1 Paired Permutation 
Given two paired samples X = (x1, x2, …, xn) and Y = (y1, y2, …, yn), suppose a sample of n units from the population 

distribution FX is paired with a sample of n units from the population distribution FY and are simultaneously tested in an 

experiment with T as the test statistic.  For k distinct values of the test statistic T, the probability distribution of the test 

statistic T = (T1, T2, …, Tk) under the null hypothesis YX FFH :0  is given by 

P(Tj= t0 | H0) = 
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where fj is the number of occurrences of Tj.  For specified value of n and the level of significance α, the critical value c 

corresponds to a level closest to α.  Ordering all the distinct occurrences of T in ascending order of magnitude, and if g is the 

position of the observed value of T, then the following significance level for the left tail of the distribution of the test statistic 

is 

α = P(Tg ≤ c | H0) = 
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and for the right tail, 

α = P(Tg ≥ c | H0) = 
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For a two-tailed test, the left and right tails are summed up. Clearly, when the distribution of the test statistic is symmetric, 





k

gkj

j

g

j

j ff
11 . 

 The distribution of the test statistic is obtained by tabulating the distinct values of the statistic against their 

probabilities of occurrence in the complete enumeration. A detail description of the implementation of the paired permutation 

algorithm is found in [20]. Further, Odiase and Ogbonmwan [20] illustrated the implementation of paired permutation 

algorithm for a balanced two-sample layout of the form 
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, where xi   X and yj   Y.  In this setting, the number of 

permutations is 










n
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n
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The test statistic is computed for each permutation in the complete enumeration of the distinct permutations.  The distribution 

of the test statistic is obtained by tabulating the distinct values of the statistic against their probabilities of occurrence in the 

complete enumeration, where all the permutations are equally likely. 

Considering consecutive number of pairs for a given experiment, the growth rate of the permutations from n–1 pairs to n 

pairs in a two-sample paired permutation experiment is 
2

2

12

n

n




, which means it doubles each time a single pair of 

observations is added. 

 

2.2 Independent samples experiment 

 Given a multisample experiment with  1 2, ,...,
i

T

i i i inX X X X , i = 1(1)p and XN =  1 2, ,..., pX X X .  Under 

the null hypothesis, XN is composed of N = 



p

i

in
1  independent and identically distributed random variables.  An exhaustive 

permutation of the observations yields 
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 permutations of the N variates of p subsets of size ni, i = 1(1)p which are 

equally likely, each having the conditional probability
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.  The number of permutations for a two-sample 

experiment is
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 , n = min (n1, n2) [16].  After obtaining the permutations of a two sample experiment, find the 

number of ways to permute any n3 elements of the combined (n1 + n2 + n3) variates of the three treatments.  This yields 
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By following the same procedure as done for the case of three treatments, a complete enumeration of the distinct 

permutations for a four-treatment experiment yields 
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Continuing in this manner, for p  3 treatments, the distinct permutations are enumerated through the expression
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.  Therefore, in a p-sample problem, the number of distinct 
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 . An illustrative implementation of distinct permutation is found in [17].  Observe that for the 

balanced case, the number of distinct permutations is 

2
np

j 3
i 0

n
       

i

jn

n


   
    

   
  =

p

j 1
   

jn

n

 
  

 
.  Again, considering 

consecutive number of treatments for a given experiment, the growth rate of the permutations from p–1 treatments to p 

treatments is 
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3.0 The repeated measures (block) permutation 
The repeated measures ANOVA approach tests the equality of means and is used when all members of a random sample are 

measured under a number of different conditions.  This approach is used for several reasons.  First, some research hypotheses 

require repeated measures as in longitudinal research.  Second, in cases where there is a great deal of variation between 

sample members.  Third, when sample members are difficult to recruit.  In the repeated measures design, each trial represents 

the measurement of the same characteristic under a different condition.  For the multivariate design, each trial represents the 

measurement of a different characteristic. 

Given the layout of a multi-sample (n x k) experiment as

11 12 1
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, where xij is an observation in the jth 

treatment and the ith block and the total number of observations in the experiment is nk.  Rank the observations for each row 

from 1 (smallest xij on row i) to k (largest xij on row i).  The permutation test procedure presented in this paper enumerates all 

the distinct permutations for a repeated measures experiment and therefore allows us to compute an empirical estimate of the 

cumulative distribution of the Friedman test statistic under the null hypothesis.  Let the layout of the ranks (rij) of the 

observations xij be
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.  The data are arranged in k columns (treatments) and n rows (blocks), 

where each block contains k repeated observations.  Obviously, there are k! possible arrangements or permutations of each 

block and due to multiplication of choices, the entire layout of the n x k experiment requires (k!)
n
 permutations of the 

observations to yield the exact distribution of a test statistic, with the permutations equally likely and each having the 

conditional probability (k!)
-n

.  Observe that the paired permutation model is a special case of the repeated measures ANOVA, 

i.e., for k = 2, (k!)
n
 = 2

n
, and this explains the shapes of the graphs for experiments involving two blocks. 

 

The first step in developing permutation algorithm is to formulate an initial configuration of the ranks of the variates of an 

experiment by taking the “trivial” configuration given below since any configuration of the ranks can engender all the distinct 

permutations. 
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 The test statistic is computed for each permutation in the complete enumeration of all the distinct permutations.  The 

distribution of the test statistic is obtained by tabulating the distinct values of the test statistic against their probabilities of 

occurrence in the complete enumeration. 

 

3.1 Methodology 
The permutation methodology for repeated measures ANOVA is first built within a block for the number of treatments before 

implementing it recursively for all the blocks in the experiment. 

 Given the first block in the experiment, assuming there are two treatments, the 2! = 2 permutations of the variates 

are obtained by simply switching the variates: (, ) and (, ). 

 Assuming there are three treatments, the 3! = 6 permutations of the variates are obtained by first allowing the first 

variate “” to occupy all the three possible positions in the layout: (, , ), (, , ) and (, , ).  The last two variates of 

these arrangements are subjected to the earlier permutation methodology of two variates to yield 3 x (2) = 6 permutations. 

 In a four treatment experiment, (, , , ), the 4! = 24 permutations of the variates are obtained by first allowing 

the first variate “” to occupy all the four possible positions in the layout: (, , , ), (, , , ), (, , , ) and (, , , 

).  The next three variates are subjected to the previous methodology for permuting three variates to yield 4 x (3 x 2) = 24 

permutations. 

 The methodology described above is extended to accommodate the k treatments in the block to arrived at k! 

permutations, this therefore ensures the exhaustive enumeration of the permutations of the variates in the block.  This 

methodology is recursively applied to all the n blocks in the experiment to arrive at (k!)
n
 permutations, due to multiplication 

of choices, for an exhaustive enumeration. 

 The major problem with permutation test is that it requires a very large number of configurations to achieve an 

exhaustive enumeration.  Considering two consecutive number of blocks for a given experiment, the growth rate of the 

permutations from n–1 blocks to n blocks is 
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 and the growth rate of the permutations from k–1 treatments to 

k treatments is 
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 and clearly, k! grows faster than k
n
 for a fixed n, and for a fixed k, k! is constant while k

n
 

explodes as n increases.  Therefore, the growth rate of the permutations is higher for a unit increase in blocks than a unit 

increase in treatments for a fixed number of treatments and the reverse is the case when it is the number of blocks that is 

fixed. 

 As an illustration, an n x k experiment with k = 3 treatments (A, B, C) and n = 2 blocks (1, 2) could have the 

“trivial” configuration or permutation of ranks represented as: 





 2Block  

 1Block  

321

321

CBA

, each row gives rise to 3! = 6 permutations, that is, 

 321
, 
 312

, 
 123

, 
 231

, 
 132

 and 
 213

.  Again, each of the 3! = 6 permutations of 

the first row (Block 1) combines with each of the 3! = 6 permutations of the second row (Block 2), leading to (3!)
2
 = 36 

permutations for an exhaustive enumeration as compiled in Table 1. 
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Table 1: Exhaustive permutation enumeration for n=2; k=3 
   
   

 
   
   

 
   
   

 
   
   

 
   
   

 
   
   

 

   
   

 
   
   

 
   
   

 
   
   

 
   
   

 
   
   

 

   
   

 
   
   

 
   
   

 
   
   

 
   
   

 
   
   

 

   
   

 
   
   

 
   
   

 
   
   

 
   
   

 
   
   

 

   
   

 
   
   

 
   
   

 
   
   

 
   
   

 
   
   

 

   
   

 
   
   

 
   
   

 
   
   

 
   
   

 
   
   

 

 

3.2 Block permutation test procedure 

Let 1 , 2 , …, n  be a set of all distinct permutations of the data set such that i  is the ith permutation of the 

observations or ranks of the observations.  Let N = (k!)
n
, the permutation test procedure is defined as follows: 

1. Rank or use the observations in each Block independently j = 1(1)k for k treatments 

2. Compute the Test Statistic T1 for the original arrangement of ranks or observations 1  

3. Obtain a distinct permutation p
; p = 1(1)N, of the experiment by permuting each block independently 

4. Compute the Test Statistic for permutation p
, Tp = T( p

), 

5. Repeat Steps 3 and 4 for p = 2, 3, …, N 

6. Construct an empirical cumulative probability distribution 

 0p
 = 

   



N

i

ii TT
N

TTp
1

11

1




 

 where θ is a step-function, that is, θ = 1, if T1 ≥ Ti,  and θ = 0 otherwise. 

7. Under the empirical distribution 
p̂

 if 
0p

, reject the null hypothesis. 

 The procedure computes the cumulative distribution of the Test Statistic, T, under the null hypothesis.  This 

algorithm ensures that the p-values are accurately generated, thereby ensuring that the probability of making a type I error is 

exactly α. 

 The problem with permutation tests has been high computational demands as in Steps 3-5.  Available permutation 

procedures can sample from the permutation sample space rather than carrying out complete enumeration of all possible 

distinct permutations.  In a survey of existing permutation procedures [14], it was discovered that none of these procedures 

can avoid the possibility of drawing the same sample more than once, thereby reducing the power of the permutation test. 

 

3.3 Block permutation computer algorithm 
The computer algorithm below implements the permutation of observations or rank of observations in a block with at most 

eight treatments.  It can be extended accordingly by repeating sections of the codes.  For a full implementation of the 

algorithm leading to the realisation of the repeated measures ANOVA, the algorithm should CALL itself n times for an n-

block experiment. 
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3.4. Friedman test for randomized block design 
The Friedman test is a non-parametric statistical test used for two-way repeated measures ANOVA by ranks similar to the 

parametric repeated measures ANOVA.  It can detect differences in treatments across multiple test attempts.  The procedure 

involves ranking each row (or block) together, then considering the values of ranks by columns.  The hypotheses of interest 

are: 

H0: the k samples come from the same population. 

H1: at least one of the samples comes from a different population. 

 

Under the truth of the null hypothesis, this test only requires exchangeability (or, if variances differ, compound symmetry) 

and the ability to rank the data.  Given data 
 

knijx
 x , that is, a tableau with n rows (the blocks), k columns (the treatments) 

and a single observation at the intersection of each block and treatment, calculate the ranks within each block. If there are tied  

values, assign to each tied value the average of the ranks that would have been assigned without ties. Replace the data with a 

new tableau 
 

knijr
 x where the entry rij is the rank of xij within block i. 

 Finally, when n or k is large (i.e. n > 15 or k > 4), the probability distribution of M can be approximated by that of a 

chi-square distribution. In this case the p-value is given by 
 MP k 

2

1
. If n or k is small, the approximation to chi-square 

becomes poor and the exact p-value of M for the Friedman test should be used when available.  If the p-value is significant, 

appropriate post-hoc multiple comparisons tests would be performed. 
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where n is the number of blocks, k is the number of treatments, and Rj is the rank sum for the jth treatment, j = 1, 2, 3, ..., k.  

For large sample sizes, the critical values can be approximated by χ
2
 with k-1 degrees of freedom [21 - 23]. 

 

4.0 Results 

The algorithm (Permutation Algorithm for Repeated Measures) is implemented in Intel Visual Fortran.  Figures 1-5 show the 

small sample probability distribution of the Friedman test statistic for different number of treatments and blocks.  The 

resulting tables of exact critical values as obtained from the exact permutation distribution of the Friedman test statistic are 

presented in Tables 2-6, exact p-values in parenthesis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Distribution of Friedman test statistic for three treatments 
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Table 2: Upper Critical values for Friedman test statistic (3 Treatments) 

No of Blocks H0.9000 H0.9500 H0.9750 H0.9900 H0.9950 H0.9975 H0.9990 

2 4.0 

(0.1667) 

      

3 4.666667 

(0.194444) 

6.0 

(0.027778) 

6.0 

(0.027778) 

    

4 4.5 

(0.1250) 

6.5 

(0.0417) 

8.0 

(0.0046) 

8.0 

(0.0046) 

   

5 5.2 

(0.0934) 

6.4 

(0.0394) 

7.6 

(0.0239) 

8.4 

(0.0085) 

8.4 

(0.0085) 

10 

(0.0008) 

10 

(0.0008) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Distribution of Friedman test statistic for four treatments 
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Table 3: Upper Critical values for Friedman test statistic (4 Treatments) 

No of Blocks M0.9000 M0.9500 M0.9750 M0.9900 M0.9950 M0.9975 M0.9990 

2 5.4 

(0.1667) 

6.0 

(0.0417) 

     

3 6.6 

(0.074653) 

7.0 

(0.053819) 

8.2 

(0.017361) 

9.0 

(0.001736) 

   

4 6.0 

(0.1053) 

7.5 

(0.0517) 

8.4 

(0.0190) 

9.3 

(0.0115) 

9.9 

(0.0062) 

10.2 

(0.0027) 

11.1 

(0.0009) 

5 6.36 

(0.0933) 

7.32 

(0.0548) 

8.76 

(0.0226) 

9.72 

(0.0120) 

10.68 

(0.0055) 

11.16 

(0.0023) 

12.12 

(0.0014) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Distribution of Friedman test statistic for five treatments 
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Table 4: Upper Critical values for Friedman test statistic (5 Treatments) 

No of Blocks M0.9000 M0.9500 M0.9750 M0.9900 M0.9950 M0.9975 M0.9990 

2 6.8 

(0.1167) 

7.6 

(0.0417) 

7.6 

(0.0417) 

8.0 

(0.0083) 

   

3 7.466667 

(0.0959) 

8.533334 

(0.0455) 

9.333333 

(0.0259) 

10.13333 

(0.0078) 

10.4 

(0.0053) 

10.93333 

(0.0028) 

11.46667 

(0.0009) 

4 

 

7.6 

(0.0950) 

8.8 

(0.0489) 

9.8 

(0.0246) 

11.0 

(0.0102) 

11.8 

(0.0051) 

12.6 

(0.0022) 

13.2 

(0.0009) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Distribution of Friedman test statistic for six treatments 

 

Table 5: Upper Critical values for Friedman test statistic (6 Treatments) 

No of Blocks M0.9000 M0.9500 M0.9750 M0.9900 M0.9950 M0.9975 M0.9990 

2 8.285714 

(0.0875) 

8.857142 

(0.0514) 

9.142858 

(0.0292) 

9.714286 

(0.0083) 

9.714286 

(0.0083) 

10.0 

(0.0014) 

10.0 

(0.0014) 

3 

 

8.714286 

(0.0957) 

9.666667 

(0.0560) 

10.80952 

(0.0247) 

11.7619 

(0.0095) 

12.33333 

(0.0052) 

12.90476 

(0.0022) 

13.28571 

(0.0010) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Distribution of Friedman test statistic for seven treatments 
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Table 6: Upper Critical values for Friedman test statistic (7 Treatments) 

No of Blocks M0.9000 M0.9500 M0.9750 M0.9900 M0.9950 M0.9975 M0.9990 

2 9.428572 

(0.1000) 

10.07143 

(0.0548) 

10.71429 

(0.0240) 

11.14286 

(0.0119) 

11.35714 

(0.0062) 

11.57143 

(0.0034) 

11.78571 

(0.0014) 

 

5.0 Conclusion 
The difficulty of implementing the permutation test lies in obtaining all the distinct permutations of the observations in a 

given experiment.  For example, a six-sample experiment with six blocks requires (6!)
6
 = 139,314,069,504,000,000 (about 

1.4x10
17

) distinct permutations.   The frequency distribution is constructed for all the distinct occurrences of the test statistic 

from which the probability distribution of the test statistic is computed. 

 Figures 1-5 reveal the fact that the chi squared distribution, which is the large sample approximation of the Friedman 

test statistic, will poorly approximate the exact distribution of the Friedman test statistic for very small sample sizes.  As 

sample and block sizes increase, the shape of the chi squared distribution begins to emerge.  The critical values for the 

Friedman test statistic are determined by cutting off the most extreme 100α% of the theoretical frequency distribution of the  

test statistic, where α is the level of significance [24].  The critical values of the Friedman test statistic contained in Tables 2-

6 are obtained from the enumeration of all the distinct permutations of the ranks of the variates in a repeated measures 

experiment.  These critical values are exact and therefore ensure that the probability of a type I error in decisions arising from 

the use of the Friedman test is exactly α. 
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