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Abstract 
 

In manufacturing and service industries, most multivariate statistical quality 

control charts are usually used to determine whether a process is performing as 

intended or if there are some unnatural causes of variation upon an overall statistics. 

Once a multivariate control chart signals, identifying which or combination of the 

quality characteristics responsible for the signal has been a difficult task. To address 

this problem,a bootstrap approach in setting up control limits is presented, and the 

decomposition method is presented to identify which or combination of variables 

responsible for the signals in a bivariate case. 
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1.0    Introduction 
Generally, univariate control charts involves the computations of one variable. For instance, ifunivariate control chart 

gives an out of control signal, one can easily detect what the problem is and give a solution since it is related to a single 

variable. But any decision based on this type of charts when two or more variables are involved is erroneous, hence the 

multivariate control charts.Most multivariate statistical quality control charts are usually used in manufacturing and service 

industries to determine whether a process is performing as intended or if there are some unnatural causes of variation upon an 

overall statistics. Once a multivariate control chart detects out of control signals, the difficulty encountered is to determine 

whether one or two or a combination of variables is responsible for the abnormal signal. Identifying which or combination of 

the quality characteristics responsible for the signal becomes necessary in taking appropriate actions that will improve the 

quality of products. Multivariate control charts are a powerful tool for identifying an out of control process [1]. It has the 

advantage of being able to monitor multiple quality characteristics simultaneously for both changes in the mean vector and 

correlation structure while maintaining a specified probability of type 1 error (α).  

Some scholars under the parametric technology have been trying to diagnose the abnormal process in multivariate 

control charts [2 - 4].One of the important multivariate statistical process control tools that have been widely used to monitor 

multivariate processes is the Hotelling’s   control charts [5 - 10]. Recently, Li et al [11] proposed a framework for 

diagnosing the out of control signals in multivariate process using optimized support vector machines.  

The multivariate control charts assumed that monitoring statistics follow a certain probability distribution such as the 

multivariate normality assumption. When the distributional assumption is violated (the usual case in practice),a control limits 

based on these distribution may be inaccurate thereby increasing the rate of false alarms (type 1 error (α)), [12, 13]. 

Multivariate control charts are at a disadvantage because it is difficult to identify which subset of the quality characteristics 

responsible for a signal since any single characteristic or combination of characteristics could have experienced a shift in 

mean value, variance, or correlation,[14-16]. 

To address these limitations of control charts while retaining their desirable features,a bootstrap approach to set up a 

control limits is presented for a bivariate case, while the decompositionmethod is used to identify which or combination of 

variables responsible for the out of control signal. The bootstrap control limits are calculated based on the percentile of 

statistics derived from bootstrap sample. The bootstrap control limits is easy to implement because it requires neither 

specification of the parameters nor a procedure for numerical integration. The absence of these requirements makes the 

bootstrap control chart easier to use.The remaining parts of this paper shall be distributed as: 2.Procedures for Setting 

Bootstrap Control Limits, 3. Identification of out of Control by Decomposition, 4. Application to Numerical Example, and 

5.Concluding Remarks. 
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2.0 Procedures for Setting BootstrapControl Limits 

Besides the parametric multivariate statistical process control (MSPC) technology, few scholars have been trying to 

diagnose the abnormal process in multivariate process via the bootstrap based multivariate control charts. A bootstrap control 

chart that can monitor both dependent and independent observations  was proposed in [17] while a discussion of the 

performance of techniques for constructing bootstrap control charts was done in [18]. A bootstrap control chart based on the 

Birnbaum-Saunders distribution was proposed in [19] while median control charts whose control limits were determined by 

estimating the variance of the sample median via bootstrap technique was proposed in [20]. A multivariate    control chart 

that can monitor a process when the distribution of observed data is not normal or unknown was proposed in [13] while the 

concept of bootstrapping technique to address the issue of uncorrelated variables as well as the distributional assumptions of 

minimax control charts was introduced in [21].  

In parametric control charting methodology an assumption often used to determine statistical properties is that the data 

are normally distributed. Assuming the observed process data followed a multivariate normal distribution, the control limit of 

a    control chart is proportional to the percentile of F-distribution [22]. However, the bootstrap technique is one of the most 

widely used resampling methods to determine statistical estimators when the population distribution is unknown [13, 23, 24]. 

What follows is the procedure to obtaining bootstrap control limits: 

1. Compute the  statistics with   observations from the in control dataset, i.e. 

    ( ̅   ̿)    ( ̅   ̿)      (1)  

2. Let   
 ( )   

 ( )     
 ( )

 be a set of     values from     bootstrap sample (         ) randomly drawn from the 

initial    statistics with replacement. In general   is the large number (           ) 
3. In each   bootstrap samples, determine the    (   )   percentile value given a users specified valued α with a 

range between 0 and 1. 

4. Determine the control limit by taking an average of     (   )   percentile values  ̅    (   ). 
5. Use the established control limit to monitor a new observation. That is, if the monitoring statistic of a new 

observation exceeds  ̅    (   ), we declare that specific observation as out of control. 

The computational time required has been perceived as one of the disadvantages of the bootstrap technique, but is no 

longer a difficult issue because of the computing power currently available.  

 

The flow chart in Fig.1 shows an overview of the bootstrap procedure to calculate control limits: 

 

3.0 Identification of Out of Control by Decomposition  
Famous literatures in the approach based on the decomposition of the    statistic for the purpose of identifying 

assignable quality characteristic with a multivariate control chart signal can be seen in [5, 25]. The procedure of [5] 

decomposes the   statistic into two ways for a bivariate data: 

        
     

    
     

      (2) 

where     
  
 (    ̅ )

 

 ̅  
       (3) 

       
  

 (    ̅   )
 

    
      (4) 

and ̅    and      are the estimators of the conditional mean and variance of  for a given value of variable  . The procedure 

of [25] is to decompose the    statistic into components that reflect the contribution of each individual variable. Thus 

showing that 

       
   ( )

        (5) 

is an indicator of relative contribution of the     variable to the overall statistic, where  ( )
  is the value of the    statistic 

for all quality characteristics except the     one. Concretely, 

    ( )
  

 (    ̅ )
 

   
      (6) 

    ( )
  

 (    ̅ )
 

   
      (7) 

and the distribution of     is given as 

      
   

 
    (   )      (8) 

where    (   ) implies the   distribution with degree of freedoms   and  (   ). 

 

4.0 Application to Numerical Example 

The data used in this study comes from a production process with two observable quality characteristics,          , as 

shown below. The data are sample means of each quality characteristics, based on samples of size     . Assume that the 

mean values of the quality characteristics and the covariance matrix were computed from 50 preliminarysamples.  
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). 

The purpose of this study is to set up a bootstrap control limits for monitoring and detection of abnormal behavior. The 

decomposition is a diagnostic tool to identify which or combination of variables responsible for the out of control when a 

bivariate control charts signal. The values of the    statistic  computed for each sample from (1) are summarized inTable 2. 

Using the Bootstrap resampling of    statistic in Table 2, 3000 new samples each of size 15 are drawn with replacement. 

From the given bootstrap procedures, the bootstrap control limit (   ) is computed such that the false alarm rate is fixed to 

0.01. The result obtained is          , and the new Hotelling’s    control chart used to monitor future observations is 

shown in Figure 2. 

 

4.1 Out-of-Control Signal’s Interpretation by the Decomposition Method 
If the computed statistic is smaller than          , then the process is still in control, if not, the process is out of 

control. When the process is out of control, the process will be stopped, and the responsible quality characteristic for this shift 

should be identified. Then associated assignable causes are detected and eliminated. For testing purposes, additional data are 

taken from the production process. Statistic    is computed and plotted in control chart as shown in Table 3 and Figure 3 

respectively.  

 

In Figure 3, we observed that process is out of control when samples 16, 17, 19 and 20 were taken. To determine which 

quality characteristic is responsible for the two cases,   is computed and given in Table 4.  

 

From Table 4,   is 37.0159 for sample 16, and by comparing it to the other decomposition value   , we notice that the 

more contributor quality characteristic to the process detected when sample 16 was taken, is the quality characteristic (QC) 

  . In the same way,    is 40.8568 for sample 17, and that the more contributor quality characteristic to the process detected 

when sample 17 was taken, is the QC   , when compared to   . However,    is 24.1004 for sample 19, is the only quality 

characteristic responsible for the out-of-control process, while    for sample 19 is in-control state. Same interpretation when 

sample 16 is taken is applicable to sample 20. In addition, a univariate control chart is constructed for each quality 

characteristic as shown in Figure 3. However, results obtain from the univariate control charts performed poorly for its 

inability to detect an out of control variable. This is one of the advantages of the multivariate control charts over the 

univariate ones, its ability to detect small to moderate shift. 

  

5.0 Concluding Remarks 
This study introduced the bootstrap approach as a means of determining the control limits of a   control chart when the 

observations do not follow a normal distribution. The multivariate quality control has become important as the growth of 

technology has made it relatively easy to monitor many quality characteristics on each unit of product manufactured. In 

practice, there are not a few situations in which the simultaneous monitoring and control of two or more related quality 

characteristics is necessary. The decomposition approach of identifying out of control signal has been introduced. Using a 

numerical example, the effectiveness of this approach has been shown. Therefore, the values of bootstrap control limit (   ) 
and decomposition (  ) obtained in this study will assist the management to take decision for monitoring future production 

purposes.          

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1: Flowchart showing Bootstrap Procedure for calculating Control limits 
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Table 1: Two observable quality characteristics from a production process. 

Sample 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

   58 60 50 54 63 53 42 55 46 50 49 57 58 75 55 

   32 33 27 31 38 30 20 31 25 29 27 30 33 45 27 

 
Table 2: Sample’s Representative of Production Process 

Sample          

1 58 32 1.126761 

2 60 33 3.169014 

3 50 27 3.169014 

4 54 31 2.042254 

5 63 38 13.52113 

6 53 30 1.690141 

7 42 20 22.8169 

8 55 31 0.704225 

9 46 25 10.6338 

10 50 29 6.690141 

11 49 27 5.070423 

12 57 30 1.690141 

13 58 33 1.901408 

14 75 45 52.8169 

15 55 27 6.338028 

 

 

 
Figure 2: Multivariate Hotelling’s   control chart 

 
Table 2: Additional Sample Representative of Production Process 

Sample        
  

   
16 60 26 40.14085 

17 43 28 41.69014 

18 58 29 7.253521 

19 66 43 39.22535 

20 52 36 45.6338 
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Figure 3: Multivariate Hotelling’s   control charts for additional data 

 

Table 4: Out-of-Control Signal’s Interpretation 

Sample      
    

        

16 40.14085 3.333333 3.125 36.80751 37.01585 

17 41.69014 0.833333 18 40.85681 23.69014 

18 7.253521 0.208333 1.125 7.045188 6.128521 

19 39.22535 35.20833 15.125 4.017019 24.10035 

20 45.6338 7.5 1.125 38.1338 44.5088 

 

 

 

 
Figure 3: Univariate control charts 
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