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Abstract 
 

The two dimensional Fokker Planck equation is used to describe the time evolution 

of energetic beam of ions under the effect of dynamical friction and diffusion in velocity 

space, in a background plasma. The equation is simulated using the Fokker Planck 

package (FPPAC 81) to obtain the slowing down distribution function for energetic 

alpha particles which are produced continuously during deuterium-tritium fusion. 

Comparison was made with an analytical slowing down distribution function which 

ignores diffusion in pitch angle space. The slowing down of the alpha particle energy 

with time was also computed and a comparison was made to that of a 180 keV 

deuterium beam in a 5 keV plasma from literature. 

 

 

Keywords: Dynamical Friction, Diffusion, Distribution function, Critical Velocity, Injection Current, Reaction Rate 

 

1.0    Introduction 
A situation that arises in many naturally occurring plasmas as well as fusion plasmas is that of a beam of fast ions moving 

through a plasma. The beam ion energy is typically much larger than the temperature of the background plasma, i.e the 

velocity of the beam    is greater than   the velocity of the background ion velocity, but less than    the background electron 

velocity. The beam ion may be the same type as the background ion or different.  

In fusion research the plasma is self heated by the energetic ions produced during the fusion reactions themselves. 
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The alpha particles produced in the reaction above have energy 200 times that of the background plasma ion and are born 

with an isotropic distribution of velocities, and thermalises with the background plasma particles as a result of multiple 

Coulomb collisions. In this work the thermalisation process is simulated by using the Fokker Planck Package (FPPAC81) to 

solve the Fokker Planck equation (FPE) for the beam ions, as it  moves through the background plasma composed of 

Maxwellian ions and electrons with densities   ,  , much greater than   , the beam ion density, in which  Coulomb 

collisions of the beam ions with the background plasma results in the frictional drag on the background ions and electrons 

which cause the beam ions to slow down, and angular scattering on the background ions which cause the beam ions to be 

deflected from their original direction. Section 2 comprises of the Fokker Planck theory, section 3 describes the methodology, 

section 4 consists of results and discussion, and section 5 is the conclusion. 

 

2.0 Theory 
Collisional interactions in a fully ionized plasma are predominantly due to the cumulative effects of many small angle 

deflections rather than due to a few large angle deflections. A formulation for describing the effects of multiple small angle 

Coulomb collisions on the distribution function   ( ⃗) is the Boltzmann‟s kinetic equation with a collision term, known as 

Fokker Planck equation[1]. 
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Where   , is the distribution function of the beam ion,    is the force, (
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is the collision term,    is the source term, and 

   the loss term. 

The collision term is given by[2,3] 
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Equation (3) was formulated by A.D. Fokker and M. Planck to treat Brownian motion [2,3]. It describes the evolution in time 

of the distribution function due Coulomb collisions. Where the magnitude of 〈  〉 is the dynamical friction giving rise to a 

slowing down of the directed motion of the particles, and 〈      〉 are velocity diffusion coefficient‟s and their effect is to 

bring about spreading of the particles velocity over a wider region of velocity space. The competition between the dynamical 

friction and velocity diffusion gives rise to the Maxwellian distribution in steady state. 

A modification of the formulation of the Fokker-Planck equation derived by Rosenbluth et al [3] is 

〈  〉    
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So that the Fokker Planck operator becomes 
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Where the usual summation convention over repeated index i and j are used and where 
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The Rosenbluth potentials are 
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Here, the Coulomb logarithm, depends on both the interacting species, and is   
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where         is the fine structure constant,    √
  

    
   is the Debye length 

  is the electron density and     is the electron mean energy. 

Equation (6) then becomes (in conservative form) 
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The coefficients                   are given in [3] 

As suggested by Rosenbluth et al [3], the „‟Rosenbluth potentials‟‟ and the distribution functions themselves may be 

represented by expansions in the Legendre polynomials. 
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The expansions for the potentials are 
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With coefficients given by, 
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2.1 Integration 
Trapezoidal integration is used, such that the density of species a is given by 

     ∫∫ (   )              ∑       (     )   ,                                   (19) 

and the energy density of species is 

        ∑       
   (     )                               (20) 
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2.2  Spatial Differencing 
The spatial derivatives are discretised using central finite difference as follows 
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Where  
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Similarly for  direction. 

 

2.3  Time Discretisation 
The collision operator is time integrated using alternating direction implicit (ADI), or fully. The procedure for the (ADI) [4,5] 

is given as: 
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The difference equations(24),and (25) and the boundary conditions written in the tridiagonal form are 
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Where             are known quantities. The procedure for solving eqs. (26) and (27) is the standard technique for solving 

tridiagonal systems[5]. 

 

2.4  Analytical Beam Distribution Function 
For an energetic beam of particles that are heavier than the plasma ions and electrons they interact with, dynamical friction is 

the dominant process through which slowing down occurs, and the distribution function is given by [6,7] 
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Where      〈  〉  is the alpha particle injection current, 
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is the critical velocity of the beam particle( the velocity at which the energy lost by the beam is 

shared equally by the plasma ions and electrons).      ,are the deuterium and tritium ion densities, 〈  〉   is the reaction 

rate parameter,   is the electron density.       are the charge numbers for the plasma and beam ions,         are the 

mass numbers for the plasma and beam ions,    and    are the mass and temperature of the electron respectively. 

 

2.5  Slowing Down Time 
The slowing down time for an ion in the plasma at temperature Te is given by [7]     
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3.0  Methodology 

3.1  Fokker Planck Package 
The package  was written by  McCoy et al [1] and solves the Fokker–Planck equations for an arbitrary number of charged 

species, described by distribution functions of speed   and pitch angle   in the presence of arbitrary number of fixed 

Maxwellian species. It comprises of two main parts. The subroutine COEF which is used to compute the Fokker Planck 

coefficients,and subroutine XSWEEP which is used to time integrate the distribution functions using either implicit operator 

splitting or an alternating direction implicit (ADI) method. The driver calls the subroutine INITIAL which reads the input 

data, initialize certain package and driver variables and call several subroutines, such as SETPARS which copies values in 

parameter statement into common storage, XINIT for setting up the spatial mesh, XINITL for computing constants and 

constant arrays, FINIT which initializes the distribution functions, SOURCE for calculating the sources in velocity space, 

GNANDE for computing the densities, and energies. The initialization ends with a call to EEPRINT which print the 

distribution function and other information. The driver then solves the Fokker-Planck operator for NSTOP time steps, by 

calls to three package routines, SETITUP, COEF, and XSWEEP. Where, subroutine SETITUP in turn calls PREPKG1 for 

setting the boundary conditions, GNANDS for copying densities and energies into package arrays, while GAMMAI 

computes the Coulomb logarithm. After the new distribution are calculated, the new densities and energies are computed for 

all species in GNANDE. This is repeated for NSTOP time steps, and output is given for NPRINT times. 

 

3.2  Procedure 
An input file named alphabeam.dat was created, where an alpha particle of mass number   =4, charge number    2, 

injection energy         MeV, injection current       〈  〉  , where 〈  〉                 ,was injected into 

a D-T plasma with                ,           ,                      . The ion species in the plasma 

was considered to be the average of    and   i.e        ,        ,            . The slowing down distribution 

for the energetic alpha particle beam was obtained from the FPPAC. The distribution function for the alpha particle was also 

obtained from the distribution given in Equation (28). A comparison was made between the two distributions at different 

values of   . The Slowing down of energy of the alpha particle beam in the plasma at                        was 

also simulated. A comparison was made to the slowing down of a 180 keV deuterium beam in a 5 keV plasma obtained from 

the literature [6] 

 

4.0  Results 

4.1  Slowing down distribution function 
The graph of the slowing down distribution of energetic alpha particle beam as a function of normalized velocity is shown in 

figures 1 -3 for varying plasma temperatures T= 20keV-10keV. The critical velocity below which the energetic alpha particle 

beam heats the plasma ions only is seen to decrease with temperature. The computed distribution function which did not 

neglect angular dependence compares fairly well with the calculated slowing down distribution which neglects the pitch 

angle dependence[6,7] 

 

4.2  Slowing down of Energy 
Using FPPAC the slowdown of 3.5 MeV alpha particle energy with time (normalised) to density was computed for plasma 

temperatures Te=10 -20 keV 

 

4.3 Critical Energy and Slowing Down Times FOR 3.5 MeV AND A 180 KeV Deuterium Beam 

 

5.0  Discussion/Conclusion 
The energetic alpha particle beam was simulated using the Fokker Planck Package FPPAC81. Fig 1 for the variation of the 

distribution functionwith normalised velocity shows that as the energetic beam slows down in the plasma losing heat, the 

population of thermalized particles increases and this is consistent with Fig. 2 for the distribution obtained analytically. The 

graphs of energy slow down with time in Figs. 3-5 show that as the temperature of the plasma increases from 10-20 KeV the 

slowdown of energy becomes more effective, this as a result of the increase in the critical energy Wc which implies more 

energy is transferred to the ions in the plasma than the electrons. Table 1 above also shows the variation critical energy and 

the slowing down time with temperature with both increasing. The ratio of critical energy to beam energy is seen to increase 

with temperature and is more for the 180 KeV deuterium beam than for the alpha particle beam. This indicates that the rate of 

transfer of energy to ions in the plasma by the deuterium beam is more than that of the alpha particle beam at the same 

temperature.Figure 6 shows the slowdown of a 180 KeV beam in a tritium plasma at Te=5 KeV which compares favourably 

with that of Figure 5 for the D-T plasma. 
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Fig 1: The normalised alpha particle beam Slowing down distribution functions, for Plasma at T=10, 15, and 20 keV. Using 

FPPAC. 

 
Fig 2: The calculated normalised alpha particle beam Slowing down distribution functions, for Plasma at T=10, 15, and 20 

keV. Using Equation (28) 

 

 
Figure3: The Slowing down of a 3.5 MeV energetic  alpha particle beam in a D-T plasma at T=10 keV 
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Figur 5 Graphs of computed normalised slowing down distribution function

of alpha particle beam at T=20,15,and 10keV
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Figur 4 Graphs of calculated normalised slowing down distribution function

of alpha particle beam at T=20,15,and 10keV
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Figure 2:Slowing down of 3.5 Mev alpha particle beam in a 10 keV deuterium tritium plasma
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Figure 4: The Slowing down of a 3.5 MeV energetic  

alpha particle beam in a D-T plasma at T=15 keV 

 

 
Figure 6: The Slowing down of a 180 keV deuteron injected into a tritium plasma with T = 5 keV. The energy of the 

deuteron is    and the energy increment,   are given to the Tritium and electrons in the plasma [6] 

 

Table 1: Critical energy and Slowing Down Times for 3.5 Mev and a 180 KeV Deuterium Beam 
Te/ keV Wc    / ms (    ⁄ )  ⁄  

10 321.58 0.200 0.03 

15 482.38 0.500 0.05 

20 643.17 0.700 0.08 

5 71.20 0.268 0.25 
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Figure 3:Slowing down of 3.5 Mev alpha particle beam in a 15 keV deuterium tritium plasma
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Figure 4:Slowing down of 3.5 Mev alpha particle beam in a 20 keV deuterium tritium plasma
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Figure 5: The Slowing down of a 3.5 MeV energetic 

alpha particle beam in a D-T plasma at T=20 keV 

 


