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Abstract

We present the Hartree-Fock computations of the effective nuclear charges, the
first and the second ionization energies of the first ten elements of the periodic table.
Our results are in fair agreement with those obtained from experiment.
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1.0 Introduction

The most common type of an ab initio electronic structure approach is called the Hartree-Fock (HF) method, in which
the electron-electron repulsion is taken into account in an averaged way (mean field approximation). This is a variational
calculation; therefore the obtained approximate energies, expressed in terms of the system’s wave function, are always equal
to or greater than the exact energy, and tend to a limiting value called the Hartree-Fock limit. Many types of calculations
begin with a HF calculation and subsequently correct for the omitted electronic correlation [1].

In computational physics and chemistry, the Hartree—Fock (HF) or Self-Consistent field (SCF) method is a method of
approximation for the determination of the wave function and the energy of a quantum many-body system in a stationary
state. In this approximation, each electron is described by a separate single-particle wave function that solves a Schrddinger-
like equation [2].

The Hartree—Fock method often assumes that the exact, N-body wave function of the system can be approximated by a
single Slater determinant (in the case where the particles are fermions) or by a single permanent (in the case of bosons) N
spin-orbitals. By invoking the variational method, one can derive a set of N-coupled equations for the N spin-orbitals. A
solution of these equations yields the Hartree—Fock wave function and energy of the system.

The Hartree—Fock method finds its typical application in the solution of the Schrédinger equation for atoms, molecules,
nanostructures and solids but it has also found widespread use in nuclear physics. In atomic structure theory, calculations
may be for a spectrum with many excited energy levels and consequently the Hartree—Fock method for atoms assumes the
wavefunction is a single configuration state function with well-defined quantum numbers and that the energy level is not
necessarily the ground state. Initially, both the Hartree method and the Hartree-Fock method were applied exclusively to
atoms, where the spherical symmetry of the system allowed one to greatly simplify the problem. These approximate methods
were (and are) often used together with the central field approximation, to impose that electrons in the same shell have the
same radial part, and to restrict the variational solution to be a spin Eigen function. Even so, solutions by hand, of the
Hartree-Fock equations for a medium sized atom were laborious; small molecules required computational resources far
beyond what was available before 1950 [3].

2.0  Theoretical Analysis

In quantum mechanics an atom can be viewed as a many-particle system. While the wave function for a single particle
system is a function of only the coordinates of that particular particle and time, P(r, t), a many-particle system will depend on
the coordinates of all the particles.

The Born-Oppenheimer Hamiltonian for N electrons moving about a heavy nucleus can be written as
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Here, (r)) is the location/position of electrons, m, -e, electron mass and charge respectively and 7;; = 7; — 7,
separation between electrons i and j.
The three sum of equation (1) embody
a. the electron kinetic energy (the first term),
b. the electron-nucleus attraction (the second term), and
c. the electron-electron coulomb repulsion (the third term).
For the accuracy of the self consistent field, other approximations were neglected such as the spin-orbit interaction,
hyperfine interaction, recoil motion of nucleus and relativity.
The self-consistent field methods are based on the Rayleigh-Ritz variational principle, which states that the ground state
Eigen function of the Hamiltonian, ¥ (x4, x5, ... ...., xy), i the wave function that minimizes the expectation value of H,
E = (Y|H[¥) )
subject to the constraints that W obey the Pauli principle (i.e., that it be anti-symmetric under the interchange of any two of
the x’s) and that it be normalized to unity:
[IW[2dVx =1 (3)
where dVx is the integration over all the spatial coordinates and summation over all of the spin coordinates of the N
electrons. Also, this minimum value of E represents the ground state energy [2].
Electrons are fermions which obey Pauli’s exclusion principle. This requires that the wave function W of electrons should be
anti-symmetric with respect to the interchange of coordinates x of any two electrons.
Wy, Xz, en ey Xy) = —W(x1, Xg, cev vee s, Xpy) 4
Slater determinants satisfy this anti-symmetric condition through appropriate linear combination of Hartree products, which
are the non-interaction electron wavefunctions.
For an N-electron system, the Slater determinant becomes,

1
W(xy, Xg, ., xy) = (ND™Zdet i, (x;) (5)
The physical interpretation of this wavefunction is that each electron moves independently in an orbital ¥, under the average
influence of all other electrons [4].
It may be noted here that the Slater determinantal wavefunction can also be conveniently written as

the

1 N!
= Z(—npp{xi(xl)x,-(xz) ------ pacm) (6)
" P-1

where the summation is over all possible N!, number of permutations amongst the N completely identical electrons and p is
the parity of the permutation P [5].
For orthonormality,
fll)gz(x)l/)a'(x)dx = Oaar (7
Since the Hamiltonian (1) does not involve the electron spin variables, the spins decouple from the space degree of freedom,
so that each single-particle wavefunction can be written as a product of space and spin functions:

lpa(x) = X(X(F)lo-a> (8)
where o, = + 1/2 is the spin projection of the orbital a. The orthonormality constraint in (7) then takes the form
Sonoar J Xa (DX (FAPT = 80, , )

So the orbitals can be orthogonal by either their spin or space dependence.
After some algebra, the energy, E, is given by

N N
N ot R LN YO PO VR R it 10
= ol —+5 @ | p@)d>r > oo | XX " a'a (10)
a=1 aa’=1
In this expression, the one-body matrix elements of the kinetic energy are
p? h? * (V72 = 43
<a|a a> = - [ xa(®V2x o (F)d3r (11)
The electron density is the sum of the single-particles densities,
_ 12
p(7) = Ti=ilxa ()| (12)
The electrostatic potential generated by the electrons is
1
o) =e? | ——=p(F)d>r’ 1
) =e* [ —=p@ar (13)
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S0 that
Vi = —4me?p(7), (14)
and the exchange matrix elements of the inter-electron repulsion are
e

2

<aa' . a'a> = e? f PAGYAGR) Yo (Dx, FHdrd*r (15)

t

The interpretation of the various terms of (10) is quite straight forward. The kinetic energy is the sum of the kinetic energies
of single particle orbitals, while the electron-nucleus attraction and direct inter-electron repulsion are just what would be
expected from a total charge of -Ne distributed in space with density p(r). The final term in (10) is the exchange energy,
which arises from the anti-symmetry of the trial wave function (5). It is a sum over all pairs of orbitals with the same spin
projection; pairs of orbitals with different spin projections are “distinguishable” and therefore do not contribute to this term.

F—7'

lonization Energy

lonization energy can be defined as being the energy required to remove the outermost electron from a gaseous atom. A
"gaseous atom" means an atom that is all by itself, not hooked up to others in a solid or a liquid. When enough energy is
added to an atom, the outermost electron can use that energy to pull away from the nucleus completely, leaving behind a
positively charged ion. The ionization energy is the exact quantity of energy that it takes to remove the outermost electron
from the atom [6]. The first and second ionization energies are depicted by

1* ionization energy: X = Xy +e (16)
2" ionization energy:  X(;y - X +e” 17)
The relationship between nuclear charge, Z and effective nuclear charge Z* is given by

Z*=Z-S (18)

where S is the shielding.

3.0  Material and Methods

We used the FORTRAN code developed by Koonin and Meredith [2]. For a large atom with many electrons, the accurate
solution of the Hartree-Fock equation is a considerable task. However, if we consider the ground state of systems with at
most 10 electrons (requiring three shells: 1s, 2s and 2p), then the numerical work can be managed in a reasonable amount of
time. A lattice of several hundred points with a redial step size of < 0.01A extending out to =3A should be sufficient for most
cases [2].

First, the code is compiled and installed in the computer system. The programme runs interactively. A menu choice is made
to change physical parameters to the system of interest. The following are then inputted: the nuclear charge for the atomic
system, number of electrons in the 1s state, number of electrons in the 2s state, number of electrons in the 2p state, radial step
size in Angstrom, outer radius of the lattice in Angstrom and number of iterations.

Output is then set to be displayed on the screen and also saved in a file with a filename of our choice. The code is then run
which displays output on the screen and also saves the result of the run in a file.

The ground state energy was first computed. Then energies of the ions (X" and X**) were computed. Subsequently, the
effective nuclear charges, the first and second ionization energies were calculated for the first ten elements of the periodic
table. The results were then analyzed using the graphing tool Origin 5.0.

4.0  Results and Discussion
Table 1: Ground state and ionization energies

Computed Values Experimental values [12]
Element (Atomic Ground State 1st ionization (eV) 2nd ionization 1% Ionization (eV) 2nd ionization

Hydrogen (1) -8.400 8.400 13.5984

Helium (2) -77.638 31.415 46.223 24.5874 54.4176
Lithium (3) -183.655 3.359 73.759 5.3917 75.6400
Beryllium (4) -388.380 10.907 18.840 9.3227 18.2111
Boron (5) -654.160 10.800 24.301 8.2980 25.1548
Carbon (6) -1006.818 13.032 20.239 11.2603 24.3833
Nitrogen (7) -1455.460 15.917 33.890 14.5341 29.6013
Oxvygen (8) -2008.563 16.091 40.556 13.6181 35.1211
Fluorine (9) -2676.801 23.226 47.737 17.4228 34.9708
Neon (10) -3470.442 31.097 56.995 21.5646 40.9630
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Table 2: 1st and 2nd Effective Nuclear Charge Z*

Effective nuclear Effective nuclear

Element charge Z*; charge Z*,
Hydrogen .849

Helium 1.844

Lithium 2.937 2.844
Beryllium 3.538 3.689
Boron 4.390 4.531
Carbon 5.135 5.375
Nitrogen 5.877 6.130
Oxygen 6.614 6.872
Fluorine 7.351 7.611
Neon 8.084 8.347
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Figure 1: First ionization energy Vs. atomic number (2)
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Second lonization Energy (eV)

Table 1 gives the computed ground state total energies and the values of the first and second ionization energies of the
first ten elements of the periodic table.
From Table 1, the computed ground state energies are all negative. This means that the energies bind the electrons to the
nucleus. In all the tables, the energies fall consistently from Hydrogen to Neon.
From Table 1, it can be observed that the first ionization energy of Helium is greater than that of hydrogen. This is in
agreement with the results of Rioux and DeKock [7]. The electrons provide some screening for each other as mutual
repulsion pushes them away from the nucleus. The outer electron of Lithium occupies a new shell screened by two electrons
and the ionization is much less than that of Hydrogen or Helium. This is in good agreement with the results of Lang and
Smith [8]. Similarly, the computed first ionization energy of Beryllium is higher than that of lithium but much lower than that
of helium. The second ionization energies from helium to boron are higher and follow a similar pattern [9].
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Figure 2: Second ionization energy Vs. atomic number (Z)
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Figure 3: Effective nuclear charge Z* vs. elements
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From Table 1, Figure 1 and Figure 2, the second ionization energies are more than the first ionization energies. This is so
because at the second level, there are more protons than electrons holding the electrons down therefore more energy is
required to pull out the second electron than the first [9]. The remarkable difference between the first and second ionization
energies of lithium is due to the sudden breaking-in to an inner level, closer to the nucleus with less shielding [10].

Table 2 and Figure 3 show the computed effective nuclear charge for the first ten elements of the periodic table. Z," shows a
steady increase from Hydrogen to Neon. Going across the table, the effective nuclear charge increases because the electrons
do not move farther away from the nucleus (they stay in the same orbital). However, the charge of the nucleus increases as
more protons are present. Because of shielding, the effective nuclear charge is somewhat less than the nuclear charge [11].
From figure 3, it can be seen that as the nucleus becomes more positive, the effective nuclear charge, Z*, increases.

The computed first and second ionization energies compare favourably with National Institute of Standards and Technology
(NIST) experimental data as reported by [12].

50  Conclusion

The Hartree-Fock method was used to compute the effective nuclear charge, the first and the second ionization energies
of the first ten elements of the periodic table. To a reasonable degree, there was a good agreement between the computed
values with experimental values. A characteristic change between helium and lithium in the first ionization energy was
observed. Also, a jump in energy between the first and second ionization energies for lithium was observed.
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