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                       Abstract 
 

The field of correlated electrons represents the frontier of our understanding of the 

electronic properties of solids. Most often, the mathematical and computational tools to 

investigate strongly correlated systems are complex, thereby making it difficult to 

following the research in this field. It is therefore necessary to develop simplified 

mathematical tools to give useful insight into these strongly correlated systems. The 

purpose of this study is to extend our earlier formulation of a highly simplified 

correlated variational approach (HSCVA) for strongly correlated two electrons on two 

sites in all three dimensions to many electrons. The standard Hubbard model is studied 

to investigate the effect of on-site interaction strength, U/4t on the variational 

parameters at various electron densities. The usual Mott insulator state at half-filling is 

elegantly obtained. The possibility of enhancing and extending the many electron 

HSCVA to larger lattices and other models is then discussed. 

 

 

1.0    Introduction 

The few particle studies usually provide very useful insight into the study of strongly correlated systems as well as 

provide a quick means to test the results obtained from infinite particle interaction in complex system. However, there are 

still relatively poor mathematical tools to analytically investigate the low-density limits [1-3]. The reason is that as we 

increase the number of particles and probably the sizes of the systems as well as the dimension, the computation become too 

complex to handle. One example is the correlated variational approach (CVA) which has been very successful in its 

application to the two-electron Hubbard and extended Hubbard models in all three dimensions (D = 1, 2, 3) [4-7]. The beauty 

of the CVA is that it yields amenable matrix sizes even for large lattices and therefore have helped in overcoming the finite-

size lattice effect in studying strongly correlated systems. Further, we have shown that in the highly simplified correlated 

variational approach (HSCVA) version [5,7], the creation and annihilation operators can be replaced by statistical operators 

which by merely adding and subtracting 1 or 2 provide the same itinerant behaviour for the kinetic part of the Hubbard model 

and Hubbard-like models. And as been pointed out in previous studies [7, 8], this formulation makes it possible to clearly 

observe the roles of the interaction matrix one decides to include in the kinetic part.   However, like other few particles 

problem, the CVA hence the HSCVA version application to lattices beyond two electrons have been very challenging (see 

Ref.[1] for a number of studies for 4 electrons].  One major problem is how to avoid repetitive states when choosing the basis 

states as well as the product of the activated states [6]. A more critical study of the formation of the HSCVA however, 

indicates that the problem of repetitive basis states can be suppressed and therefore the approach can be extended to study 

systems with more than two electrons. This is the purpose of this current study which is to demonstrate the many electrons 

interaction within the HSCVA to study strongly correlated systems. Our focus here is to investigate if the ground state of the 

Hubbard model is a Mott insulator state as has been observed both theoretically [9,10] and experimentally [11, 12]. The Mott 

insulator state occurs when all the conduction elections are tied to the atomic sites. This means the charge degree of freedom 

will be localized at these atomic sites thereby leaving the spin and orbital degrees of freedom to combine to produce various 

ordering patterns. This is the basic property of the transition oxides and by extension the high temperature superconducting 

copper oxides [9, 13, 14]. It is this observation of the Mott insulating state in the Hubbard model that first engendered interest 

in using it to explore high temperature superconducting cuprates [15-17].  Therefore, investigating the Mott insulator state in  
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the many electron Hubbard interaction in the HSCVA is a necessary precursory step. The study is structured as follows. In 

the section II, a brief review of the HSCVA will be done for the two-electron interaction in the Hubbard model so as to 

determine the salient features of the formation that can be used to extend it to many electrons. The application of the many 

electron HSCVA will be done for four lattice sites at various electron density in Section III. Here the electron density n = 

Np/N where Np is the number of electrons and N is the number of lattice sites determines the electronic filling level (= Np/Ne) 

where  Ne  = 2N is the maximum number of electrons that can occupy N. The results will be presented and discussed in 

Section IV and this will be followed by a conclusion.  

 

2.0     Brief Review of the HSCVA for the two-electron Hubbard Interaction 
The formulation of the correlated variational approach for the two-electron ground state problem on an arbitrary large 

torus was initiated for one dimension (1D) and two dimension (2D) in Ref [4]. It was then extended to three dimension (3D) 

by Enaibe and Idiodi [18]. In the CVA, the variational ground state energy has to be minimized with respect to the variational 

parameters to obtain several algebraic equations which can then be expressed as the matrix representation of the two-electron 

Hubbard interaction in the lattice system being studied.  To avoid this minimization process which become more tedious with 

increase in the lattice sites as well as dimension, the HSCVA was formulated by developing a general expression for the 

direct matrix representation of the two-electron Hubbard interaction in ID, 2D, and 3D lattices and it is given by [5, 7],  
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where  H is the Hubbard model, 
CXLX  are the variational parameters which are functions of the various separation, LCX  of 

the basis states, E is the energy spectrum and U/4t is the ratio of the Coulomb potential, U to the hopping term, t. Obviously 

the salient features required to apply the HSCVA  are (1) identify the possible separations, LCX for the lattice system under 

study (2) select the first basis state ( 
22

, NN ) hence the electronic configuration of all the basis states (3) activate the basis 

states for the various separation using the kinetic part of the Hubbard Hamiltonian and (4) identify the new states from the 

activation of the basis states using the Kinetic part of the Hubbard Hamiltonian, their various separations Lx and the number 

of such new states   

The standard Hubbard model also known as the t-U Hamiltonian is given by 

  Ut HHH           (2a) 

with Ht being the kinetic part: 
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and HU being the Coulombic interaction part which is the origin of electron correlation:        
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It is important to point out that Eq.(2b) is obtained from the overlap of two atomic Wannier orbitals )(ri on site i and 

)(rj  on site j [9]: 
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where m is the electron mass and Planck constant ħ is set to unity. Thus in Eqs. (2b), the  ii cc ,
are the creation and 

annihilation operators respectively, for an election of spin )(  in the Wannier state on the ith(jth) lattice site(s). The 

notation  means nearest neighbours, while t is the electronic hopping parameter between nearest neighbour sites i and 

j. H. C. denotes Hermitian conjugation and its inclusion in the Hamiltonian guarantees that the expectation values of the 

dynamical quantities will be real. 

 Similarly, Eq.(2c) is obtained from a two electron Coulombic intrasite interaction: 
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Thus in Eq. (2c), the 
 ii

  is the number operators for two electrons. It follows then that the Hubbard model was 

developed effectively from two electrons on two sites with on-site Coulombic interaction. 

Taking into account the condition that only nearest neighbour is allowed, Eq. (2b) can be expanded for a four sites problem 

(i, j, k, l = 1, 2, 3, 4) as follows: 
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It is easy to see that irrespective of the number of electrons, the annihilation will be for one electron on one site of the basis 

state  and the creation of one electron will be for the appropriate NN site on the condition that (1) if this NN site is vacant, 

then the electron can be created in it irrespective of its quantum characteristics and (2) if there is an electron already 

occupying this NN site, then the Pauli Exclusion principle requires that the electron to be created must  not possess the same 

quantum characteristics as the first one. This is also expected for the Hermitian conjugate part.  Thus the annihilation and 

creation operators and their Hermitian conjugates effectively deals with two electrons on two sites at any given instance until 

the operation of the full kinetic Hamiltonian is completed. Now each of these instances is similar to the observed scenario for 

the independent case of Np = 2 on N = 2. Therefore the generalized equation developed for the Np = 2 on N = 2 can be 

adopted by summing up all the possible instances for any numbers of electrons and sites in all three dimensions. All that is 

needful is to obtain the aforementioned salient features of the HSCVA.  

Following the above line of observation, the wavefunction constructed for the Np = 2 on N = 2 can also be extended for the 

many electron Hubbard interactions on lattices in all three dimensions. In previous work [ 5, 7], the wavefunction obtained 

for the Np = 2 on N = 2 is 
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with i = j for on-site states (double occupancy) and i  j for inter-site states.  Therefore the lattice separation is given by 

iiL   for on-site states and  jiL   for inter-site states where CXLL   for that of the basis states and XLL  for 

that of the new states. For the four site problem ((i, j, k, l), Eq. (4) can be extended to become 
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Clearly, the possible separations for the basis states for N = 4 will be 2,1,0CXL . 

Finally, one can easily see that using Eq.(3) to operate on a basis state of four electrons on four sites will yield the same new 

states as using our statistical hopperer, Hp [7], that is, for the state /1↑, 2↓, 3↑, 4↓> say, 
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where the Hp is given for 1D in general as 

 




)1(,/,/,,)1(,,/

,,,/,)1(,/,,/,,)1/(,,/,,/

lkjilkji

lkjilkjilkjiH P
    ( 7 )  

 

Journal of the Nigerian Association of Mathematical Physics Volume 26 (March, 2014), 137 - 146            

 



140 

 

Many Electron Highly Simplified Correlated…         Akpojotor          J   of    NAMP 
 

3.0     Application of the many electron HSCVA 
 

The four atomic sites lattice can be filled with a maximum of eight electrons. This means one can have quarter filling (Np = 2 

on N = 4), half filling (Np = 4 on N = 4), three quarter filling (Np = 6 on N = 4) and 7/8 filling (Np = 7 on N = 8). 

(i) Quarter-filling: 2-electron interaction on 4 atomic sites  (8 electronic sites)   

The selected basis state for  N = 4 is 
2

,
2

NN = /2, 2>. Therefore the basis states configuration and their separations 

will be /2, 2> with LCX = 0, /2,3>  with  LCX = 1 and /2,4>  with LCX = 2 as shown in Fig. 1. 

 

 

 

 

 

 

 

 

 

Fig. 1 The electronic configuration of the basis states for the various separation for Np = 4 on N = 4. 

 

 A d o p t i n g  E q . ( 7 )  t o  a c t i v a t e  t h e  b a s i s  s t a t e s ,  we  o b t a i n  

HP /2,2>= /1,2>, /3,2>, /2,1>, /2,3>      

HP /2, 3>= /1,3>, /3,3>, /2,2>, /2,4>      

HP /2, 4>= /1, 4>+/3, 4>, /2, 3>, /2, 1>     

Thus a table showing LCX, LX  and can now be prepared as shown in Table 1. Taking into account these values in 

Eq.(1), the matrix representation of the Hubbard interaction for Np = 2 on N = 4 will be 
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Eq. (8) is solved numerically to obtain the ground state energy and the variational parameters as the on-site interaction 

strength, U/4t is increased from 0 to 20. The results are presented in Table 2 while a graph of the effect of increasing the U/4t 

from 0 to 20 on the variational parameters is shown in Fig. 6. 

 

Table 1. A table showing the separation of the basis states, LCX, separation of the new states 

from activation of the basis states, LX and the number of new states with separation, . 

Separation of the basis states 

LCX 

Separation of the new states 

from activation of the basis 

states  

LX 

Number of new states 
new 

states with separation LX  

 

0 1 4 

1 

 

0 

2 

2 

2 

2 1 4 

 

(ii) Half-filling: 4-electron interaction on 4 atomic sites  (8 electronic sites) 

The four electron Np = 4 on four sites N = 4 is half filling. The selected basis state for  N = 4 is /2, 2>. Therefore the basis 

state configuration and their separations will be /2, 2> with LCX = 0, /2,3>  with  LCX = 1 and /2,4>  with LCX = 2. 

For configuration of the two remaining electrons, there are two possible types of the electronic configurations of the basis 

states as follows: 
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a.  Starting with the basis state /2, 2, 1,3>  as shown in  as shown Fig 2. 

 

 

 

 

 

 

 

 

Fig. (2) The electronic configuration of the basis states for the various separation for Np = 4 on N = 4 

starting with the state /2,2,1,3>.  

 

Observe that the spins of the last two sites in the case of the separation Lc = 1 have to be interchange in line with the Pauli 

Exclusion Principle. Because the emphasis of the HSCVA is on the separation, this interchange will not affect the outcome of 

the configuration since the number of electrons with spin-up and spin-down remain equal, that is: HP /2, 3, 1, 3> = HP / 

2, 3, 1, 3>.  

In general, the activation of these basis states will yield  

HP /2,2,1,3>= /3,2,1,3> , /2,1,1,3>,  /2, 2,/4,3>, /2,2 /1,4> 

HP /2, 3,1,3> = /1, 3, 1,3>, /2,2,1,3>, /2, 4,1,3>, /2, 3,2,3> 

   /2, 3,4,3>, /2, 3,1,4> 

HP /2, 4, 1,3>= /3, 4,1,3>, /2, 1,1,3>, /2, 4, 4,3>, /2, 4, 1,2> 

The LCX, LX  and are obtained and then taking into account Eq.(1), the matrix representation of the Hubbard 

interaction for Np = 4 on N = 4 starting with the basis state /2, 2, 1,3>  will be 

 

















































 

0

0

0

264

363

36)4/(43

2

1

0

X

X

XtUE

       (9) 

Eq. (9) is solved numerically and the results depicted graphically showing the effect of increasing the U/4t from 0 to 20 on 

the variational parameters for Np = 4 on N = 4 starting with the basis state /2, 2, 1,3> as shown in Fig. 7. 

b. Starting with basis state  /2,2,1,4>  as shown in Fig.3.   It is pertinent to quickly point out that the third type of 

configuration with basis state  /2,2,3,4> will yield the same results as that with the basis state  /2,2,1,4>  and 

therefore will not be demonstrated separately.   

 

 

 

 

 

 

 

 

 

Fig. 3 The electronic configuration of the basis states for the various separation for Np = 4 on N = 

4 starting the with state  /2,2,1,4> .  

 

Again observe that the spins of the last two sites in the case of the separation Lc = 2 have to be interchanged in line with the 

Pauli Exclusion Principle. Because the emphasis of the HSCVA is on the separation, this interchange will not affect the 

outcome of the configuration since the number of electrons with spin-up and spin-down remain equal. 

The activation of these basis states will yield  

HP /2, 2,1,4>= /3,2,1,4>, /2,1,1,4>, /2,3,1,4>, /2,2,4,4>, /2,2,1,1>, 

/2,2,1,3> 

HP /2,3,1,4> = /3,3,1,4>, /2,2,1,4>, /2,3,4,4>, /2,3,1,1> 

HP /2, 4, 1, 4>= /1, 4, 1, 4>, /3, 4, 1, 4>, /2, 3, 1, 4>, /2, 4, 2, 4>, /2, 4, 1, 1>, /2, 

4, 1, 3> 

The LCX, LX  and are obtained and then taking into account Eq.(1), the matrix representation of the Hubbard 

interaction for Np = 4 on N = 4 starting with the basis state /2,2,1,4>   will be 
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Eq. (10) is solved numerically and the results depicted graphically showing the effect of increasing the U/4t from 0 to 20 on 

the variational parameters for Np = 4 on N = 4 starting with the basis state /2, 2, 1, 4> as shown in Fig. 8 

(iii) Three-quarter-filling: 6-electron interaction on 4 atomic sites  (8 electronic sites) 

The six electron Np = 6 on four sites N = 4 is three quarter  filling and there is only one type of the electronic configurations 

and that starting with the basis state /2, 2,1,1,3,4> as shown in Fig.  4.  

 

 

 

 

 

 

 

 

 

             Fig. 4 The electronic configuration of the basis states for the various separation for Np = 6 on N = 4. 

 

 Again observe that the spins of the last two sites in the case of the separation Lc = 2 have to be interchanged in line with the 

Pauli Exclusion Principle. Because the emphasis of the HSCVA is on the separation, this interchange will not affect the 

outcome of the configuration since the number of electrons with spin-up and spin-down remain equal. 

 

The  activation of these basis states will yield 

HP /2, 2,1,1,3,4> = /2, 3,1,1,3,4>,  /2, 2,4,1,3,4> , /2, 2,1,1,4,4>, /2, 

2,1,1,3,3> 

HP /2, 3,1,1,3,4>= /2,2,1,1,3,4>, /2,3,4,1,3,4>, /2,3,1,2,3,4>, 

/2,3,1,1,4,4> 

HP /2, 4, 1,1,3,4>= /3, 4, 1,1,3,4>, /2, 4, 1,2,3,4>,  

/2, 4, 1,1,2,4>, /2, 4, 1,1,3,3> 

The LCX, LX  and are obtained and then taking into account Eq.(1), the matrix representation of the Hubbard 

interaction for Np = 6 on N = 4 will be 
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       (11) 

Eq. (11) is solved numerically and the results depicted graphically showing the effect of increasing the U/4t from 0 to 20 on 

the variational parameters for Np = 6 on N = 4 as shown in Fig. 9. 

 

iv. 7/8-filling: 6-electron interaction on 4 atomic sites  (8 electronic sites) - One Electron Removal Approach 

The seven electron Np = 7 on four sites N = 4 is 7/8 filling and it is also known as the first electron removal (FER) approach 

in theoretical and experimental studies of the high TC superconducting cuprates [19, 20]. It has only one type of electronic 

configurations of the basis states as shown in Fig.  5 starting with the basis state /2, 2,1,1,3, 3, 4>. The removal of 

only one electron means the number of electrons with spin in one direction will be more than the ones in the opposite 

direction. This immediately will affect the antiferromagnetic order. Thus the FER approach which can be achieved in real 

systems by doping is very appropriate to study the superconducting cuprates in which doping level determine the phase 

diagram [19, 20].  In the Hubbard model, doping is expected to destroy the long range antiferromagnetic order to pave way 

for the transition into the superconducting state [9, 16, 21].  

Further, the inequality of the electronic spins in opposite direction will leads to no degeneracy of the groundstate energy of 

the triplet states because there are usually more new states for the spin direction with the addition spin than the spin with 

opposite direction. 
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Fig. 5 The electronic configuration of the basis states for the various separation for Np = 7 on N = 

4 starting with the state  /2, 2,1,1,3,4>. 

 

 Observe that the electronic configuration for the basis states with separations  Lc = 1 and Lc = 2 appear similar but for their 

spins. Now there is difference between the outcome of the activation of these two basis states because of the differences in 

the number of electrons with spin-up and spin-down. 

The  activation of these basis states will yield 

HP /2, 2,1,1,3, 3, 4> = /2, 2,1,4,3, 3, 4>, /2, 2,1,1,3, 4, 4> 

HP /2, 3,1,1,3, 4, 4> = /2, 2,1,1,3, 4, 4>, /2, 3,1,2,3, 4, 4> 

HP /2, 4,1,1, 3, 3, 4> = /2, 4,1,2, 3, 3, 4>, /2, 4,1,1, 3, 2, 4> 

The LCX, LX  and are obtained and then taking into account Eq.(1), the matrix representation of the Hubbard 

interaction for Np = 7 on N = 4  will be 
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Eq. (12) is solved numerically and the results depicted graphically showing the effect of increasing the U/4t from 0 to 20 on 

the variational parameters for Np = 7 on N = 4 as shown in Fig. 10. 

 

4.0    Presentation and Discussion of Results 
It is a common knowledge that at T = 0, there are two important terms that dominate the Hubbard model: the relative 

interaction strength U/4t and electron density hence the filling level. Therefore the results presented here is to simply 

consider the effect of the Coulomb interaction hence correlation on the electronic states for various fillings. This is achieved 

by first switching off the Coulombic interaction strength U/4t = 0 and then switching it on gradually till U/4t = 20. The effect 

of the role of the Coulomb interaction is monitored by the variational parameters. The first observation which is consistent 

with earlier studies of only two electron interaction on many sites in 1D – 3D is that for all fillings, the trend is that switching 

off the Coulombic interaction makes all the variational parameters to have the same values which means the same probability 

of being occupied  [3-7]. The physical interpretation is that the electrons are not localized and therefore are free to move into 

any site. This simply means the kinetic part dominates. Then as U/4t is increased, the values of the on-site various parameters 

decrease at all fillings while the inter-site states increases as shown in Figs. 6-10. This observation which is also consistent 

with the aforementioned earlier studies means the electrons are gradually being localized due to increasing correlation effect 

to form the Mott insulator state. Now for the quarter filling and half filling, the numerical values of the variational parameters 

1LX  and 
2LX are different meaning the electrons prefer to stay apart from each other, that is, localized on atomic different 

sites as shown in Figs. 6-8 This is also long range antiferromagnetic order. On the contrary, as shown in Figs. 9 and 10, 

increasing the density of electrons beyond half filling makes the other variational parameters beyond Lc = 0 to have the same 

numerical values (
1LX  = 

2LX ) that is, they now have equal probability of being occupied. The implication is that the 

electrons are no longer localized in the inter-site states as the effect of correlation is now purely restricted to the on-site states. 

This clearly explain why the Mott insulator is observed in most studies [9, 10, 15, 16] at half filling for many electron 

Hubbard interaction. Since it is caused by the on-site Coulomb repulsion, this standard Hubbard Mott insulator is also known 

as intrasite Mott insulator.  Thus it can be generalized by including inter-site Coulomb repulsion leading to generalized Mott 

insulator and such Hamiltonians become extended versions of the Hubbard model. The simplest of them is the t-U-V model 

[22, 23] where the V is the NN inter-site Coulombic interaction. A special case is when the V term is considered as the 

hybridization between different layers leading to the Periodic Anderson model (PAM) which has been demonstrated to be 

antiferromagnetic like the parent Hubbard model [24, 25]. The PAM has been used to obtain very useful information on 

heavy fermions [26, 27]. 
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It is important to point out that as stated in the introduction, when the charge degree of freedom is localized, the spin and 

orbital degrees of freedom then combine to produce various ordering patterns. To account for the role of the spin degree of 

freedom, the NN superexchange interaction can be included to obtain the t-U-V-Jex model. Now as it has been observed in 

previous studies, a two-electron system will always produce an antiferomagnetic order except we use the unrealistic 

configuration of the two electrons having the same spins to produce triplet basis states, /1, 2> and /1, 2>. The ground 

state energy of the triplet states is therefore degenerate. Now in the many electron HSCVA, the triplet basis states appear 

naturally: for example, in the starting basis state /2, 2, 1,3> for the half-filling case of Np = 4 on N = 4, the natural 

triplet states are /2, 1> and /2, 3>. Since the activation of these states produce the same new states as the activation of 

/2, 1> and /2, 3>, the ground state energy will also be degenerate. Therefore the generalized HSCVA equation for both 

the singlet and triplet states of Np = 2 on N = 2 [5] will also be applicable to the many electron interaction in a t-U-V-Jex 

model which has vast application in spin ordering systems in 1D, 2D and 3D. Similarly, the HSCVA many electron 

interaction can also be used to study the strong coupling limit of the Hubbard model wherein U → ∞ yielding the t-J model 

which has been extensively investigated for the high TC superconductivity in the cuprates. 

 

5.0     Conclusion 
The effect of filling has been investigated in the many electron interaction HSCVA on four atomic sites since filling 

plays an important role in electronic correlations in a partially filled 𝑑 electron band as often found in transition metal oxides 

including the high temperature superconducting copper oxides and the partially filled f electron in heavy fermionic systems. 

The Mott Insulator state is observed at half-filling while the quarter-filling provides the check on the formation of the 

HSCVA. The possibility of applying the HSCVA to the study of other models is also discussed. As it has been consistently 

pointed out [19], the beauty of the HSCVA is that one can start the investigation by obtaining the bandwidth of the non-

interacting case. Thereafter one can introduce the desired interactions and monitor their effects.  Thus the enhancement and 

extension of the study here to larger numbers of electrons and lattice sizes in all three dimensions as well as the application of 

the many electron interaction HSCVA to other models beyond the Hubbard model studied here are open challenges in 

making this approach a viable pedagogical but powerful mathematical tool for studying strongly correlated models and 

systems.   

 

Table 2. A table showing the separation of the basis states, LCX, separation of the new states from activation of the basis 

states, LX and the number of new states new states with separation, . 

On-site interaction 

strength  

U/4t  

Ground State 

Energy 

 Es 

Variational parameters  
 

X0 

 

X1 

   

  X2 

0 -4.0000 0.5774 0.5774 0.5774 

2 -3.2078 0.2179 0.6106 0.7614 

4 -3.0462 0.1262 0.6010 0.7892 

6 -2.9806 0.0882 0.5952 0.7987 

8 -2.9452 0.0677 0.5915 0.8034 

10 -2.9231 0.0549 0.5891 0.8062 

12 -2.9081 0.0462 0.5874 0.8080 

14 -2.8972 0.0398 0.5861 0.8092 

16 -2.8889 0.0350 0.5851 0.8101 

18 -2.8824 0.0312 0.5843 0.8109 

20 -2.8771 0.0282 0.5837 0.8114 
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Fig. 6 (colour online): A graph showing the variation 

 parameters as the on-site interaction strength, U/4t is 

 increased from 0 to 20 for Np = 2 on N = 4. 

 

               
Fig. 8 (colour online): A graph showing the variation parameters  

as the on-site interaction strength, U/4t is increased from 0 to 20 

 for Np = 4 on N = 4 starting with basis state /2,2,1,4>. 

 

 
Fig. 10 (colour online): A graph showing the variation parameters 

 as the on-site interaction strength, U/4t is increased from 0 to 20 

 for Np = 7 on N = 4  

Fig. 7 (colour online): A graph showing the variation parameters 

as the on-site interaction strength, U/4t is increased from 0 to 20 

for Np = 4 on N = 4 starting with basis state  /2,2,1,3>. 

 

Fig. 9 (colour online): A graph showing the variation 

 parameters as the on-site interaction strength,  

U/4t is increased from 0 to 20 for Np = 6 on N = 4 
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