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                       Abstract 
 

This paper investigates the dynamic behaviour of a finite uniform Rayleigh beam 

subjected to travelling distributed loads. The fourth order partial differential equation 

governing the motion of the beam is first treated with the Fourier Sine integral 

transformation to reduce it to a second order coupled ordinary differential equation 

which is further simplified using the modified asymptotic method of struble. The closed 

form solution obtained is analysed and numerical calculation and representation in 

plotted curves show that as the foundation modulus and rotatory inertia correction 

factor increase, the response amplitude of the dynamical system decreases. It is further 

deduced that, for the same natural frequency, the critical speed for the system traversed 

by a distributed force is greater than that traversed by moving distributed mass. Thus, 

resonance is reached earlier in the moving distributed mass system than in the moving 

distributed force system. This clearly shows that the moving distributed force solution 

is not an upper bound to the moving distributed mass problem. 

 

 

1.0    Introduction 

The interaction of travelling subsystems and structural systems is a major research area in the field of structural 

engineering design and construction. It is especially of enormous importance to the study of the dynamic characteristic of 

bridges or concrete slabs under moving masses. Thus, the subject has drawn considerable attention from researchers in 

Engineering and Physical Sciences [1,2,3] for well over a century. Most of the early previous analysis works in this area were 

directed at the dynamic behaviour of structures under the moving force. These include the work of Willis [4], Yoshida [5], 

Krylov [6] and Steel [7]. However, in the analysis of the effects of vehicles moving over large-span bridges, Inglis [8] 

introduced a theory according to where the gravitational effects of the moving load may be separated from the inertia ones. 

The separation is significant especially when the load mass around the beam mass are of considerable magnitude. An attempt 

to solve this type of dynamical problem was first made by Saller [9], then Jeffcott [10] whose iterative methods become 

divergent in some cases. The work of Stanisic et al [11] gave impetus to a wide range of analytical developments in this area 

of study in the recent years. Recent research contributions in this area of study include those of Mofid and Akin [12], Green 

and Cebon [13], Akin and Mofid [14], Yavari et al [15], Nikkhoo et al [16], Oni and Omolofe [17], Oni and Awodola [18], 

Oni and Omolofe [19]. Impressive though these works are, the authors simplified their investigations by modelling their 

loads as concentrated line loads which are mere approximation and not accurate representation of the load as it traverses the 

structure. To this end, this paper concerns the flexural motions of a finite simply supported uniform Rayleigh beam under 

travelling distributed masses. The focus is on analytical development so as to treat the issue of resonance phenomena. The 

influence of the various Rayleigh beam-structure parameters on the vibrating system shall be classified. 

 

2.0      Mathematical Formulation 
Consider the problem of the flexural vibrations of a finite uniform Rayleigh beam resting on an elastic foundation. The 

distributed load traversing the beam is assumed to move at uniform velocity. The equation of motion of the beam is the fourth 

order partial differential equation given by [1] 
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where   is the spatial coordinate,   is the time,        is the transverse displacement,   is Young’s modulus,   is the constant 

Moment of inertia of the beam,   is the constant mass per unit length of the beam, r
0 

is the measure of rotatory inertia 

correction factor,   is the elastic foundation constant and        is the uniform distributed load acting on the beam. For this 

problem, the distributed load moving on the beam under consideration has mass commensurable with the mass of the beam. 

Consequently, the load inertia is not negligible but significantly affects the behaviour of the dynamical system. Thus, the 

distributed load        takes the form, 

                                              *  
 

 

        

   
+                                                                   

where         is the continuous moving force acting on the beam model given by 

                                                                                                                                          

 

where   is the velocity of the distributed mass, the time   is assumed to be limited to that interval of time within which the 

mass   is on the beam, that is 

 

                                                                                                                                                        

   is the acceleration due to gravity, and         is the Heaviside function defined as  

                                       {
      
      

                                                                                   

   
  

   
  is the convective acceleration operator defined as  

                            
  

   
 

  

   
   

  

    
   

  

   
                                                                               

 

Substituting (2.2), (2.3) and (2.12) into (2.1), we obtain 
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Equation (2.13) is the fourth order partial differential equation governing the transverse displacement response of a uniform 

Rayleigh beam on a winkler elastic foundation and under the actions of moving distributed loads. The beam has span L and is 

simply supported. Accordingly, the deflections and moments vanish at end x = 0 and x = Lx. Thus,  

                                                                                                                                          
and 

                            
        

   
    

        

   
                                                                                     

The initial conditions are taken to be, without any loss of generality, 

                                      
         

   
                                                                                       

 

3.0    Solution Techniques 
In this paper, in order to compute the transverse displacement        of the vibrating beam, use is made of the Finite fourier 

integral sine transform. This integral transformation technique is given by 
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with inverse 
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Applying the integral transform (3.1), the governing equation (2.13) becomes 

 

                      ̅                   ̅                             

               ∫           
   

 
                                                                                               

 

 

 

where 

 

                (
  

 
)
 

∫    
   

 

 

 

                                                                                               

 

                     
  

   
{
 

 
∑

 

  

 ̅     
    

 
∫    

   

   
   

   

 
  

 

 

 

   

}                                    

 

                    ∫        
        

   
   

   

 
                                                                   

 

 

 

 

                   ∫        
        

    
   

   

 

 

 

                                                                   

 

                   ∫        
        

   

 

 

   
   

 
                                                                   

 

In order to evaluate the integrals in (3.9), (3.10) and (3.11), use is made of the Fourier series representation of the Heaviside 

step function given as  

 

        
 

 
 

 

 
∑

   (             )

    
          

 

   

                                                  

Adopting (3.12), equations (3.9)...(3.11) simplify into 
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Substituting (3.7), (3.8), (3.13)...(3.15) into (3.6) with some simplifications and rearrangements, one obtains 
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Solving integrals in (3.18), and substituting into equation (3.16) yields 
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Equation (3.19) is now the fundamental equation of our problem when the uniform Rayleigh beam has simple supports at all 

edges. In what follows, we shall discuss two cases of the equation. 

 

3.1 Simply Supported Uniform Rayleigh Beam Traversed By Moving   Distributed Force 

 

An approximate model of the system when the inertia effect of moving distributed mass M is neglected is called moving 

distributed force problem and it is obtained when    is set to zero in (3.19).  Thus, the moving distributed force problem 

associated with the system  is given as 
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which when rearranged gives 
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where 
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Solving equation (3.21) using the method of Laplace transforms and Convolution theory in conjunction with the initial 

conditions (2.14), one obtains 
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Substituting (3.23) into (3.2), we obtain 
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as the transverse displacement response to a distributed force moving at constant velocity of a uniform simply supported 

Rayleigh beam resting on elastic foundation. 

 

3.2 Simply Supported Uniform Rayleigh Beam Traversed By Moving Distributed Mass 

 

This section seeks the solution of the entire equation (3.19) subjected to the initial conditions (2.14) when all the inertia terms 

are considered. In this case       This is termed the moving mass problem.  Evidently, an exact solution to this problem is 

impossible. Thus, a technique which is based on a modification of Struble’s technique discussed in [14] is resorted to. To this 

end, equation (3.19) is rearranged to take the form 
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where 
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First, we shall consider the homogeneous part of (3.26) and obtain a modified frequency corresponding to the frequency of 

the free system due to the presence of the moving distributed mass. An equivalent free system operator defined by the 

modified frequency then replaces equation (3.26). Thus, the right hand of equation (3.26) is set to zero and a parameter 

     is considered for any arbitrary mass ratio    , defined as 
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Setting     , a situation corresponding to the case in which the inertia effect of the mass of the system is regarded as 

negligible is obtained, then  the solution of (3.26) can be written as 
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where              are constants. 

Since     , Struble’s technique requires that the asymptotic solution of the homogeneous part of equation (3.26) be of the 

form [15] 
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Substituting equations (3.33) and its derivatives into the homogeneous part of equation (3.26) while taking into account 

(3.30) and retaining terms to      , one obtains 
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The variational equations are obtained by equating the coefficients of    [           ] and    [           ] on both 

sides of equation (3.34). Hence, noting the following trigonometric identities, 
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and neglecting terms that do not contribute to the variational equation, equation (3.34) reduces to 
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Then, the variational equations are respectively 
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    Solving equations (3.41) and (3.42) respectively, one obtains                                                                                                                            
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where    and    are constants. 

Therefore when the effects of the mass of the particle is considered, the first approximation to the homogeneous system is 
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is called the modified natural frequency corresponding to the frequency of the free system due to the presence of the 

distributed moving mass. 

Thus to solve the non-homogeneous equation (3.26), the differential operator which acts on  ̅      and  ̅      is replaced 

by the modified frequency     , i.e 
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Solving equation (3.47) by methods of Laplace transforms and Convolution theory in conjunction with the initial condition, 

one obtains expression for  ̅     . Thus, in view of (3.2)  
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Equation (3.48) represents the transverse displacement response to a distributed mass moving with constant velocity of a 

simply supported uniform Rayleigh beam resting on an elastic foundation. 

 

4.0     Discussion of the Analytical Solutions 
At this point, it is important to establish conditions under which resonance occurs for an undamped system such as this. 

Resonance takes place when the transverse displacement of the vibrating structure increase without bound. In actual practice, 

when this happens, the structure collapses as the intensive vibrations cause cracks or permanent deformation in the vibrating 

structures. 

Equation (3.25) clearly shows that the simply supported uniform Rayleigh beam resting on elastic foundation and traversed 

by moving distributed force reaches a state of resonance whenever 

                                    
   

 
                                                                                                                 

while equation (3.48) indicates that the same beam under the action of a moving distributed mass experiences resonance 

effect when, 
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Equations (4.1) and (4.3) show that for the same natural frequency, the critical speed for the system consisting of a simply 

supported uniform Rayleigh beam resting on an elastic foundation and traversed by a distributed force moving with a uniform 

velocity is greater than that of the distributed moving mass. Thus, resonance is reached earlier in the distributed moving mass 

system than in the distributed moving force system. 

 

5.0     Numerical Results and Discussion  
In order to illustrate the foregoing analysis, the simply supported uniform Rayleigh beam is taken to be of length L=12.192m, 

the load velocity, c=8.128     and E=2109 10
9
kg/m. The values of the rotatory inertia correction factor r

0
 are varied 

between 0.5 and 9.5, while the values of the foundation moduli constant K are varied between 0 and 4000000   .The 

flexural vibrations of the simply supported uniform Rayleigh beam are calculated and graphs are plotted for beam response 

against time for values of rotatory inertia correction factor r
0
 and foundation moduli constant K. 

 Fig 5.1, displays the displacement response of a finite uniform simply supported Rayleigh beam to moving distributed 

force for various values of foundation moduli K and fixed rotatory inertia correction factor r
0
=7.5. The graph shows that the 

response amplitude decreases as the value of K increases. In Fig 5.2, the displacement response of a finite uniform simply 

supported Rayleigh to moving distributed force for various values of  rotatory inertia correction factor r
0 
and fixed foundation 

modulus K =40000 is displayed. The graph shows that the response amplitude decreases as the value of r
0
 increases.  Fig 5.3, 

depicts the deflection profile of a finite uniform simply supported Rayleigh beam to moving distributed mass for various 

values of foundation moduli K and fixed  rotatory inertia correction factor r
0
=7.5. The graph shows that the response 

amplitude decreases as the value of K increases. Also, in Fig 5.4, the deflection profile of a finite uniform simply supported 

Rayleigh beam to moving distributed mass for various values of  rotatory inertia correction factor r
0
 and fixed foundation 

modulus K =40000. The graph shows that the response amplitude decreases as the value of r
0
 increases. Fig 5.5, shows 

comparison of response to moving distributed force and moving distributed mass for the simply supported finite uniform 

Rayleigh beam for fixed foundation modulus K =400000 and fixed rotatory inertia correction factor r
0
=7.5. Clearly the 

response amplitude of the moving distributed mass system is higher than that of the moving distributed force system. This 

clearly confirms that the moving distributed force solution is not always an upper bound to the solution of the moving 

distributed mass system. This interesting result has been reported in [  ] for the cases when the travelling load is modelled as 

concentrated load. 

Journal of the Nigerian Association of Mathematical Physics Volume 26 (March, 2014), 125 – 136           

 



135 

 

Dynamical Analysis of a Finite Simply…         Ayankop-Andi, Oni  and  Ogunbamike     J of  NAMP 
 

 

  
 

Fig 5.1: Displacement response of a uniform simply supported 

 Rayleigh beam to distributed forces for various values of  

foundation moduli K   

                                  

 

 

                                        
 

Fig 5.3: Deflection profile of a uniform simply supported 

 Rayleigh beam to distributed masses for various values 

 of foundation moduli K.    

 

 
    

                                   

Fig 5.5: Comparison of the displacement response of moving distributed force and moving distributed mass  

    cases of a uniform simply supported Rayleigh beam for Ro=7.5 and K=400000 
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6.0   Concluding Remarks 
In this paper, an analysis of the flexural motions of a finite simply supported uniform Rayleigh beam subjected to 

travelling distributed loads has been presented. Both gravity and inertia effects of the distributed loads were taken into 

consideration. The fourth order partial differential equation governing the motion of the beam was solved using the 

generalized integral transformation technique and the modified asymptotic method of Struble. The deflection of the beam 

having simple supports at both ends was calculated and shown graphically for various values of foundation moduli and 

rotatory inertia correction factor. It was found that as the value of foundation moduli is increased, the displacement response 

of the beam decreases. Also, as the rotatory inertia correction factor increases, results show that the deflection of the beam 

model decreases. It is deduced that for the same natural frequency, the critical speed for the system consisting of a simply 

supported uniform Rayleigh beam resting on an elastic foundation and traversed by a distributed force moving with a uniform 

velocity is greater than that of the distributed moving mass problem. Thus, resonance is reached earlier in the distributed 

moving mass system than in the distributed moving force system. It is further seen that the response amplitude of the moving 

distributed mass system is higher than that of the moving distributed force system for fixed values of rotatory inertia 

correction factor and foundation moduli. Thus for the simply supported moving distributed load problem, it is established that 

the moving distributed force solution is not an upper bound for an accurate solution of the moving distributed mass problem.  
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