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                       Abstract 
 

In this paper, the dynamic analysis of rectangular plate, with general classical boundary 

conditions, carrying moving masses and resting on a bi-parametric (Pasternak) elastic 

foundation with stiffness variation is considered. The governing equation is a fourth order 

partial differential equation with variable and singular coefficients, in order to solve the 

governing equation, a technique based on separation of variables is used to reduce the equation 

to a sequence of second order ordinary differential equations. The Struble’s technique and the 

integral transformations are employed for the solutions of the second order ordinary differential 

equations. The results are then presented in plotted curves. The results show that as the value of 

the rotatory inertia correction factor Ro increases, the response amplitudes of the plate decrease 

and that, for fixed value of Ro, the displacements of the plate decrease as the foundation 

modulus Fo increases for the variants of the classical boundary conditions considered. The 

results also show that for fixed Ro and Fo, the transverse deflections of the rectangular plates 

under the actions of moving masses are higher than those when only the force effects of the 

moving load are considered. For the rectangular plate, for the same natural frequency, the 

critical speed for moving mass problem is smaller than that of the moving force problem for all 

variants of classical boundary conditions, that is, resonance is reached earlier in moving mass 

problem than in moving force problem, this implies that the moving force solution is not a save 

approximation to the moving mass problem and hence it is highly risky to rely on the moving 

force solution as an approximate solution to the moving mass problem.  
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1.0    Introduction 

The plate, or flexural member, is frequently encountered in structures and machines. Elastic structures ranging from 

bridges and roads to space vehicles are constantly acted upon by moving loads and hence, the problem of analyzing the 

dynamic response of elastic structures under the action of moving masses continues to motivate a variety of investigations [1-

6].  

Generally, the dynamical problems of structures under moving loads and resting on a foundation are complex. The 

complexity increases if the foundation stiffness varies along the span of the structure. Aside the problem of singularity 

brought in by the inclusion of the inertia effects of the moving load, the coefficients of the governing fourth order partial 

differential equation are no longer constant but variable. Earlier researchers into beam member on variable elastic foundation 

include Franklin and Scott [7] who presented a closed-form solution to a linear variation of the foundation modulus using 

contour-integrals. Closely following this, Lentini [8] presented a finite difference method to solve the problem where the 

foundation stiffness varies along x as a power of x. These works, though useful, considered the loads acting on the beams to 

be static (not moving). Recently, Oni and Awodola [9] extended the works of these previous authors to investigate the 

dynamic response to moving concentrated masses of uniform Rayleigh beams resting on variable Winkler elastic foundation. 

Oni and Awodola [10] again considered the dynamic response under a moving load of an elastically supported non-prismatic 

Bernoulli-Euler beam on variable elastic foundation. The technique was based on the generalized Galerkin’s method and 

integral transformations. 
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The foundation model based on Winkler’s approximation model is very common in literature, whereas, in such an 

important Engineering problem as the vibration of plates resting on elastic foundation, a more accurate Two-Parameter 

(Pasternak) foundation model which in addition to subgrade modulus incorporates the shear effect of the foundation should 

be used rather than the Winkler’s approximation model. Eisenberger and Clastornik [11] presented two methods for the 

solution of beams on variable two-parameter elastic foundation. Also, Gbadeyan and Oni [12] studied the dynamic analysis 

of an elastic plate continuously supported by an elastic Pasternak foundation traversed by an arbitrary number of concentrated 

masses. In their work, they assumed that both the foundation modulus and the shear modulus are constants. 

Several researchers have also made tremendous efforts in the study of dynamics of structures under moving loads [13 - 

21]. Aside the problem arising from the inclusion of the inertia terms in moving mass problems, difficulties often arise from 

the type of specified end-conditions. There are four classical boundary conditions that are commonly of practical interest to 

an applied Mathematician or an Engineer. These are Pinned end conditions (Simply supported end conditions), Fixed / 

Clamped end conditions, Free end conditions and Sliding end conditions [22]. 

In most of the investigations in literature on vibration of rectangular plate under moving loads and resting on elastic 

foundations, work has been restricted to cases when the elastic foundations are regarded as being constant. The more 

complicated case, when the elastic foundation varies along the span of the structure has been neglected, where this is 

considered, work has been restricted to the simplest forms of the problem when the structure is simply supported [23] or 

when the foundation model is based on the simple and common Winkler’s approximation model [24]. This paper is therefore 

concerned with the problem of assessing the dynamic response to moving concentrated masses of rectangular plates with 

general classical boundary conditions and resting on variable Pasternak elastic foundations. 

 

2.0 Governing Equation 

 

 

 

 

 

 

 

 

 

Figure 2.1. 

Figure 2.1 is a differential element of a plate showing the various shearing forces, bending and twisting moments and 

external loads acting. The bending moment per unit length Mx, My arise from the distribution of normal stresses while the 

twisting moment per unit length Mxy and Myx (shown as double cross-vectors) arise from shearing stresses. The shear forces 

per unit length Qx and Qy also arise from shearing stresses. 

Consider a rectangular plate carrying an arbitrary number (say N) of concentrated masses M i moving with constant velocities 

ci, i = 1, 2, 3,…,N along a straight line parallel to the x-axis issuing from point y = s on the y-axis. The equation governing 

the dynamic transverse displacement V(x,y,t) of the rectangular plate when it is resting on a variable Pasternak foundation 

and traversed by several moving concentrated masses is the fourth order partial differential equation given by [23] 
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where D is the bending rigidity of the plate,   is mass per unit area of the plate, x is the position co-ordinate in x – direction, 

 y is position co-ordinate in y – direction, t is the time, 0R  is the rotatory inertia correction factor, 
2  is the two-

dimensional Laplacian operator, F0 is the foundation modulus, G0 is the shear modulus, g is the acceleration due to gravity 

and  (.) is the Dirac-Delta function. 

 

At this juncture, the boundary condition is arbitrary and the initial condition, without any loss of generality, is taken as 

t
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3.0 Analytical Approximate Solution 
 

In this section, we seek to obtain the analytical solution to the problem of the dynamic response of a rectangular plate resting 

on Variable Pasternak elastic foundation and subjected to arbitrary support conditions. The method of analysis involves 

expressing the Dirac – Delta function as a Fourier cosine series. A technique [13] based on separation of variables is used to 

tackle the fourth order partial differential equation governing the motion of the plate and reduce it to a set of coupled second 

order ordinary differential equations. Then, the modified asymptotic method of Struble in conjunction with the techniques of 

integral transformation and convolution theory are then employed to obtain the closed form solution of the resulting second 

order ordinary differential equations. 

 

In order to solve equation (1), in the first instance, the deflection is written in the form [13] 
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where n are the known eigenfunctions of the plate with the same boundary conditions. The n have the form of 
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n, n = 1, 2, 3, … , are the natural frequencies of the dynamical system and Tn(t) are amplitude functions which have to be 

calculated. 

In order to solve the equation (1), it is rewritten as 
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The right hand side of equation (6) is written in the form of a series to have 
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Substituting equation (3) into equation (7) we have  
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Multiplying both sides of equation (8) by p(x,y) and integrating on area A of the plate, we have  
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Considering the orthogonality of n(x,y), we have 
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where  A
p dAP 2*   

Using (11), equation (6), taking into account (3) and (4), can be written as 
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Equation (12) must be satisfied for arbitrary x, y and this is possible only when  
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The system in equation (13) is a set of coupled ordinary differential equations. 

Considering the property of the Dirac-Delta function and expressing it in the Fourier cosine series as 
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equation (13) becomes 
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The second order coupled differential equation (16) is the transformed equation governing the problem of a rectangular plate 

with general boundary condition and resting on a Pasternak elastic foundation with stiffness variation. 
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n(x,y) are assumed to be the products of the functions ni(x) and nj(y) which are the beam functions in the directions of x 

and y axes respectively [24]. That is 
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these beam functions can be defined respectively, as 
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where Ani, Anj, Bni, Bnj, Cni and Cnj are constants determined by the boundary conditions. ni and nj are called the mode 

frequencies. 

In order to solve equation (16) we shall consider only one mass M traveling with uniform velocity c along the line y = s. Thus 

for the single mass M equation (16) reduces to 
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Equation (20) is the fundamental equation of our problem when the rectangular plate has arbitrary end support conditions. 

We shall discuss two cases of the equation (20) namely; the moving force and the moving mass problems. 

    

Case I: Rectangular plate traversed by a moving force 

 

In this section, an approximate model of the differential equation describing the response of a rectangular plate resting on a 

variable non-Winkler (Pasternak) elastic foundation and traversed by a moving force would be obtained from equation (20) 

by setting 
0
 = 0. 

Thus, setting 
0
 = 0, equation (20) reduces to 
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represents the classical case of a moving force problem associated with our system. It is an approximate model which 

assumes the inertia effect of the moving mass as negligible. An exact analytical solution to equation (22) is evidently not 

possible. Consequently, the approximate analytical solution technique, which is a modification of the asymptotic method of 

Struble [24] shall be used. 
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First, we neglect the rotatory inertial term and rearrange the equation (22) to take the form 
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By means of this technique, one seeks the modified frequency corresponding to the frequency of the free system due to the 

presence of the shear modulus G0. An equivalent free system operator defined by the modified frequency then replaces 

equation (23). Thus, we set the right hand side of (23) to zero and consider a parameter 
*
 < 1 for any arbitrary ratio  

*
 

defined as 

 
*

*
*

1 


           (25)  

so that  )(
2***  o          (26) 

 

Thus, the homogeneous part of equation (23) can be replaced with 
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is the modified frequency due to the effect of the shear modulus of the foundation. It is observed that when 
*
 = 0, we recover 

the frequency of the moving force problem when the shear modulus effect of the foundation is neglected 

 

Using equation (27), equation (22) can be written as 
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In what follows, we seek the modified frequency corresponding to the frequency of the free system due to the presence of the 

effect of rotatory inertia correction factor R0. An equivalent free system operator defined by the modified frequency then 

replaces equation (29). To this end, the homogenous part of equation (29) is rearranged to take the form 
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Now consider the parameter 
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 < 1 for any arbitrary ratio defined as 

 

p

p









1

*
           (31) 

It can be shown that 
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Following the same argument, equation (30) can be replaced with 
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represents the modified frequency corresponding to the frequency of the free system due to the presence of the rotatory 

inertia. It is observed that when 
*
 = 0, we recover the frequency of the moving force problem when the rotatory inertia effect 

is neglected. 

 

In order to solve the non-homogenous equation (29), the differential operator which acts on Tn(t) is replaced by the 

equivalent free system operator defined by the modified frequency sf.  

Thus the moving force problem (22) is reduced to the non-homogeneous ordinary differential equation given as 
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as the transverse displacement response to a moving force of a rectangular plate resting on variable non-Winkler (Pasternak) 

elastic foundation and having arbitrary edge supports. 

Case II: Rectangular plate traversed by a moving mass 

 

In this section, we seek the solution to the entire equation (20) when no term of the coupled differential equation is neglected. 

 

Evidently, an exact analytical solution to equation (20) does not exist, an analytical approximate method is therefore 

desirable. To this end, the approximate analytical solution method of Struble that has been used to tackle this form of coupled 

differential equation shall be employed to treat equation (20). We take note that, neglecting the terms representing the inertia 

effect of the moving mass we obtain equation (29) and then equation (35). The homogeneous part of this equation can be 

replaced by a free system operator defined by the modified frequency sf, due to the presence of the effects of rotatory inertia 

and the shear modulus of the foundation. Thus, equation (20) can be rewritten in the form       
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Furthermore, for our plate model, resting on variable non-Winkler elastic foundation and traversed by a moving mass, we 

rearrange equation (40) to take the form 
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where )43(),(coscos2)(cos)(cos
2

2
)( ****

3

1 11

***

3

**

3

1

*

3

*1 








 

















kjP
L

sk

L

ctj
jP

L

ctj
kP

L

skP

P
tR

j k YXj Xk Y



)44(),(coscos2)(cos)(cos
2

2
)( ****

4

1 11

***

4

**

4

1

*

4

*2 








 

















kjP
L

sk

L

ctj
jP

L

ctj
kP

L

skP

P

c
tR

j k YXj Xk Y



)45(),(coscos2)(cos)(cos
2

2
)( ****

5

1 11

***

5

**

5

1

*

5

*

2

3 








 

















kjP
L

sk

L

ctj
jP

L

ctj
kP

L

skP

P

c
tR

j k YXj Xk Y


Going through 

the same arguments and analysis as in the previous case, considering the homogeneous part of equation (42), the modified 

frequency corresponding to the frequency of the free system due to the presence of the moving mass M is obtained and an 

equivalent free system operator defined by the modified frequency then replaces equation (42). 

Thus, equation (42) becomes 

)()()(
)(

*

02

2

2

sct
P

LgL
tT

dt

tTd
pjpi

YX
nsf

n 


                (46) 

where s has been written as a function of the mass ratio µ0 and 
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is the modified frequency corresponding to the frequency of the free system due to the presence of moving mass. Here, it is 

remarked that this modified frequency has in it the effects of the shear modulus of the foundation and rotatory inertia. It is 

observed that when 0 = 0 in equation (47), we recover the frequency of the moving force problem of the same dynamical 

system. 

Using (18), equation (46) becomes 
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It is noticed that equation (48) is analogous to equation (37) with sf and Gg replacing sf and Km respectively. 

Therefore, one obtains 
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     (50) 

Equation (50) is the transverse displacement response to a moving mass of a rectangular plate resting on variable Pasternak 

elastic foundation and having arbitrary edge supports.  

 

The constants Ani, Api, Anj, Apj, Bni, Bpi, Bnj, Bpj, Cni, Cpi, Cnj and Cpj are to be determined from the choice of the end support 

condition. 

 

4.0 Illustrative Examples 
In this section, the foregoing analysis is illustrated by various practical examples. In Particular, classical boundary conditions 

such as Clamped-Simple end conditions and Free-Clamped end conditions are considered. 

 

4.1 Clamped-Simple Rectangular plate 
For a rectangular plate clamped at edges y = 0, y = LY with simple supports at edges x = 0, x = LX, the conditions at such 

opposite edges are expressed as 
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and for normal modes 
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For the clamped edges, it is straight forward to show that 
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11  pjnj BB  and                   (56) 

pjpjnjnj ACAC          (57) 

and the frequency equation of the clamped edges is given by the following determinant equation 

0
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which yields 1coshcos  njnj                    (59) 

and for the simple edges, it is readily shown that 

 Ani = 0, Bni = 0, Cni = 0, and ni = ni                 (60) 

Similarly, Api = 0, Bpi = 0, Cpi = 0, and pi = pi                 (61) 

Using (55), (56), (57), (59), (60) and (61) in equations (39) and (50) one obtains the displacement response respectively to a 

moving force and a moving mass of a simple-clamped rectangular plate resting on a variable Pasternak elastic foundation. 

 

 

4.2 Clamped-Free rectangular plate 

For a rectangular plate clamped at edges y = 0, y = LY and free at edges x = 0, x = LX, the conditions at such opposite edges 

are expressed as  
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and for normal modes 

 0
)(

,0
)0(

2

2

2

2











x

L

x

Xnini
, 0)(,0)0(  Ynjnj L              (64) 

 0
)(

,0
)0(

3

3

3

3











x

L

x

Xnini
, 0

)(
,0

)0(











y

L

y

Ynjnj
                        (65) 

Our initial conditions are of the form 

 
t

yxW
yxW






)0,,(
0)0,,(                  (66) 

Thus, we have 
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and the frequency equation for the dynamical problem is 

 1coshcos  nini and 1coshcos  njnj     (70) 

such that ......99561.10,85320.7,73004.4 321  iii and   (71a) 

   ......99561.10,85320.7,73004.4 321  jjj    (71b) 

Using (67), (68), (69), (71a) and (71b) in equations (39) and (50) one obtains the displacement response respectively to a 

moving force and a moving mass of a free-clamped rectangular plate resting on a variable Pasternak elastic foundation. 
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5.0 Discussion of the Analytical Solutions 
Here, we shall examine the phenomenon of resonance. From equation (39), it is evident that the rectangular plate on a 

variable Pasternak elastic foundation and traversed by a moving force encounters a resonance effect when 
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while equation (50) reveals that the same plate under the action of a moving mass reaches the state of resonance whenever 

 sf
X

pi

L

c
          (73) 

where  






























2

3

1

0

2
1

sf

sfsf

R
R




                    (74) 

Equations (73) and (74) imply 
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Consequently, for the same natural frequency, the critical speed (and the natural frequency) for the moving mass problem is 

smaller than that of the moving force problem. Thus, resonance is reached earlier in the moving mass system than in the 

moving force system. 

 

6.0 Numerical Calculations and Discussion of Results 
Calculations of practical interests in dynamics of structures are presented in this section for all the illustrative examples. A 

rectangular plate of length LY = 0.914m and breadth LX = 0.457m has been considered. The mass is assumed to travel at the 

constant velocity 0.8123m/s. Also, E, S and  are chosen to be 2.109x10
9 
kg/m

2
, 0.4m and 0.2 respectively. The results are as 

presented on the various graphs below for the various classes of boundary conditions. 

 

6.1 Clamped-Simple rectangular plate 

The dynamic responses of the rectangular plate clamped at the edges y = 0 and y = LY and simply supported at the edges x = 

0 and x = LX are presented in Figures 1and 2. 

Figure 1 displays the effect of Rotatory inertia (R0) on the transverse deflection of the clamped-simple rectangular plate for 

the case of moving force. The graph show that the response amplitudes decrease as the value of the Rotatory inertia 

correction factor increases. Figure 2 displays the effect of Shear modulus (G0) on the transverse deflection of the clamped-

simple rectangular plate for the case of moving mass. It is shown that the response amplitudes decrease as the value of G0 

increases. 
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Figure  1: Deflection profile of clamped-simple plate resting on variable Pasternak foundation 
and traversed by moving force for Fo=1000000, Go=900000 and various values of Ro. 
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6.2 Clamped-Free rectangular plate 

The dynamic responses of the rectangular plate clamped at the edges y = 0 and y = LY and free at the edges x = 0 and x = LX 

are presented in Figures 3-5. 
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Figure 2: Displacement profile of clamped-simple rectangular plate resting on variable 
Pasternak foundation and traversed by moving mass for Fo=1000000, Ro=0.4 and various 

values of Go. 
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Figure 3: Displacement profile of clamped-free plate on variable Pasternak foundation and 
traversed by moving mass for Fo=2000000, Go=1000 and various values of Ro. 
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Figure 4: Deflection profile of clamped-free  rectangular plate on variable Pasternak 
foundation and traversed by moving force for Fo=100000, Ro=0.4 and various values of Go. 
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Figures 3 and 4 display the effects of Rotatory inertia (R0) and Shear modulus (G0) respectively on the transverse 

deflection of the clamped-free rectangular plate for the cases of moving mass and moving force respectively. The graphs 

show that the response amplitudes decrease as the values of R0 and G0 increase.  

Figure 5 compares the displacement curves of the moving force and moving mass for a clamped-free rectangular plate 

with F0 = 1000000 N/m
3
, R0 = 0.4 and G0 = 100000 N/m. Evidently, the response amplitude of the moving mass is greater 

than that of the moving force problem. 

 

7.0 Conclusion 
The problem of the dynamic analysis of rectangular plates with general classical boundary conditions and resting on 

variable Pasternak elastic foundations has been studied in this work. The closed form solutions of the fourth order partial 

differential equations with variable and singular coefficients of the rectangular plate is obtained for both cases of moving 

force and moving mass. The solution technique is based on the technique of Shadnam et al [13] which was used to remove 

the singularity in the governing fourth order partial differential equation and to reduce it to a sequence of coupled second 

order differential equations. These coupled second order differential equations were then simplified using the modified 

Struble’s asymptotic technique. The methods of integral transformation and the convolution theory are then employed to 

obtain the analytical solution of the two-dimensional dynamical problem. 

These solutions are analyzed and resonance conditions are obtained for the problem. The analyses carried out show that 

the moving force solution is not an upper bound for the accurate solution of the moving mass problem and that as the rotatory 

inertia correction factor increases, the response amplitudes of the plates decrease for both cases of moving force and moving 

mass problem. When the rotatory inertia correction factor is fixed, the displacements of the rectangular plates resting on 

variable Pasternak elastic foundations decrease as the shear modulus increases for the variants of classical boundary 

conditions considered. Also, as the foundation modulus increases, the response amplitudes of the plates decrease, the effect 

of shear modulus is observed to be more noticeable than that of the foundation modulus.  

It is shown further from the results that, for fixed values of rotatory inertia correction factor, foundation modulus and 

shear modulus, the response amplitude for the moving mass problem is greater than that of the moving force problem 

implying that resonance is reached earlier in moving mass problem than in moving force problem of the rectangular plate 

resting on variable Pasternak elastic foundation for the variants of boundary condition considered. Also, an increase in the 

shear modulus results in an increase in the critical speed of the moving load; this shows that risk is reduced when the shear 

modulus increases. The same result obtains for an increase in both foundation modulus and rotatory inertial correction factor 

for all the classical boundary conditions that are considered. 

Finally, the results in this work agree with what obtains in literature [6,9 and 10]. Hence the method employed in this 

work is accurate and the solutions are convergent. 
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Figure 5: Comparison of the deflections of moving force and moving mass cases for clamped-
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