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                       Abstract 
 

In a recent paper, we constructed three classes of orthogonal polynomials for use 

in the perturbation term of a numerical integration scheme analogous to the tau 

method of Lanczos and Ortiz for ordinary differential equations. The resulting      

degree approximant,       of the solution      of the differential equation was 

accurate and hence justi_ed the scheme. In this present paper, we report an error 

estimation of the method based on our earlier work. The estimate obtained is good as it 

correctly captures the order of the tau approximant. 

 

 

1.0    Introduction 

The tau method of Lanczos solves the        order differential equation: 
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by seeking an approximant 
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of      which is the exact solution of the corresponding perturbed system 
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where                                are real integers,      denotes the derivates of order   of     , the perturbation 

term       in (1.3a) is defined by: 
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and   
   

 is the coefficient of    in the      degree chebyshev polynomial      ; that is, 
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The     are free parameters to be determined and s, the number of overdetermination of (1.1a), is defined by: 

 max 0 0rs N r r m       

For different order   and  , (that is         and        ). 

In Issa and Adeniyi [1], we replaced (1.1) by certain orthogonal polynomial and showed that the resulting approximant       of 

     was accurate and favourably compared with the approximant obtained from (1.2). 
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In the next section we shall briefly review an error estimation of Adeniyi et al [2, 3] for the tau method (1.3) and construction of 

orthogonal polynomials (Nu-Polynomials). In section 3 we shall follow Adeniyi et al [3, 4] to estimate the error of the method 

reported in [1]. Section 4 focuses on experimentation with the error estimate. The paper is finally concluded in section 5 with 

some concluding remarks. 

 

2.0  Review of Orthogonal Polynomials (Nu-Polynomials) 
Orthogonal polynomials have been widely used in problems involving the approximation of functions such as in the 

economization of power series, mini-max approximation, Gaussian quadrature techniques, solution of both integral and 

differential equation as well as in collocation techniques, among others [2, 3, 5, 6-12]. 

The construction of these polynomials may be based on the three equations of Gram Schmidt orthogonalization principle 

namely: 
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Where             is the orthogonal polynomial in question. 

By employing equations (2.1) for three cases of      over      , we obtained the following results: 

 

Case 1:               , we have: 

                                     and so on 

 

Case 2:               , we have: 

              
 

 
              

 

 
            and so on 

Case 3:                , we have: 

                                    and so on 

 

2.1 An Error Estimation of the Tau Method 

Based on the error of the Lanczos economization process, Adeniyi et al [2, 3, 4] constructed an error polynomial: 
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as an approximation to the error 
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in    ), obtained from the Tau approximation process (1.3). The parameter    is to be determined along with other 

parameters defined in the next section while       is some point at which the conditions (1.3b) is specified. The details 

of the procedure for the determination of (     )   
is presented in the next section. 

 

3.0      An Error estimation of an analogue of the Tau Method for ODEs 
Following Adeniyi et al [2], we defined error function (2.1.2) as                  which is the exact solution of the 

error differential system: 
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where    replaces the    in (1.3a). 

Now, closely similar to the error polynomial (2.1.1) is the error approximant 
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of       in (2.1.2) and which satisfies exactly the perturbed error differential system: 
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The extra parameters              in (3.3a) are to be determined along with    in (3.2). 

Equating the corresponding coefficients of                      in (3.3) gives     equations for the unique 

determination of              and   , a forward elimination process is recommended for the solution of this resulting linear 

system. The value of    is then inserted into (3.2) and subsequently, we get the estimate 
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of the maximum error 
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4.0     Numerical Examples 
We consider three problems for implementation with the method in the above discourse 

Example 4.1 
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Using (1.3a), we have 
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where       is given by (1.2),    and   are to be determined,       can be any of the orthogonal polynomials discoursed in 

section 2 

From (4.1) and the given problem, we have 
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Seeking an approximant (3.2), we have 
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Again, substituting (4.2) in (3.3) we obtain 
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Equating the corresponding coefficient in (4.3), and solve the resulting equation for different cases of      ,         . 

See Table 4.1 for the numerical results of the error estimate. 

Example 4.2 
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Numerical results for the error estimate for this example are presented in Table 4.2. 

Example 4.3 
2'( ) ( ) 0,y x x y x   (0) 1y  , 0 1x   

With analytical solution 
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Numerical results for the error estimate for this example are presented in Table 4.3. 
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Table 4.1: Error Estimate for Example 4.1 

Weight function (      Degree 5      Degree 6      Degree 7      

                                  

                                  

                                   

Chebyshev                               

 

Table 4.2: Error Estimate for Example 4.2 

Weight function (      Degree 5      Degree 6      Degree 7      

                                  

                                  

                                   

Chebyshev                               

 

Table 4.3: Error Estimate for Example 4.3 

Weight function (      Degree 5      Degree 6      Degree 7      

                                  

                                  

                                   

Chebyshev                               

 

5.0     Conclusion 
An error estimation of an analogue of the tau method for initial value problems in ordinary differential equations has been 

presented. Results for three variants based on three classes of orthogonal polynomials show that the error estimate is good, 

especially              which give more accurate result compare to that of chebyshev polynomial and the others also 

captured the Tau approximant correctly. 
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