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                       Abstract 
 

The need to have L-stablegeneral linear method (GLM) with higher order than 

Runge-Kutta methods has provided the need to propose second derivative GLM 

(SDGLM) and also multi-derivative GLM.This paper therefore describes somethird 

derivative general linear methods (TDGLM)which incorporates up to the third 

derivative terms.The methodswhich are diagonallyimplicit areA( )-stable. 
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1.0    Introduction 
Recently TDRK methods (Third derivative Runge-Kutta methods) which has a simple transformation to TDGLM were 

introduced in [1]for the numerical solution of the initial value problems(IVPs) in ordinary differential equations (ODEs) 
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Interestingly, these methods can be derived to possess inherent RK stability [2] and nearly ARK stability [1] properties.In a 

related study, Ezzeddine and Hojjati [3] had considered third derivative linear multistep methods (TDLMM) for stiff 

problems. In particular, the TDGLM introduced in [1] is 
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In matrix form 
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where, 1 nn xxh  is the step length,  TSYYYY ,,, 21  denotes the stages, the  TSFFFF ,,, 21  , 

 TSFFFF  ,,, 21  ,  TSFFFF  ,,, 21   are first, second, and  third derivatives respectively.The
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evaluated at step 1n  and n  respectively. 

The matrices in (3) are   )()1(
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are of order q .The abscissa vector is 
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si cccc ],...,,[ 21 and ]1,0[ic .The output method 
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is of order p.The dimension of the GLM in (3) is )3()( rsrs  .An example of theTDGLM (3) is     
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The stability polynomial of this TDGLMis
62

1),(
32 zz

zwzw  . The stability polynomial is exactly the same 

as that of the classical third order RK method. By implication, this method will behave like the third order RK method. The 

interval of absolute stability of this method is (-2.513, 0). The stability plot is given in Fig. 1. 

 
Fig. 1: The stability region of the GLM (3a). 

 

 

The stability matrix of (3) is  

   hzUAzAzzAIBzzBBzVz    ,)()( 1

3

3
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21 ,  (4) 

while the stability polynomial is 

    )(det),( zwIzw  .     (5) 

Definition 1. c.f. [4]: If M(z), known as the stability function, has the special form 

     )()(det),( 1 zRwwzwIzw r   ,    

then the method is said to possess RK stability. 
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For implicit case, 
)(
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  , where )(zN  and )(z  are polynomials.If the diagonal elements of the method (3) are 

equal, we calculate the value of the stability function as the trace of )(z and we find 
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where the numerator satisfies the condition 

  )(01)exp()( 132  ps zzzzzzN  . 

The values of , ,and which yields a stable methods are determined from the followingE- polynomial formula 
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For details see [5] and [6].The example method is explicit; it is suitable for non-stiff IVPs.This paper briefly describes a new 

type of diagonally implicit counterpart with unequal elements on the diagonal. Methods of these kinds are in [7]. They are 

cheaper and simple to implement when compared with the so called fully implicit methods. One of the motivations for 

extending SDGLM to TDGLM is that the additional stage term introduced into the methods improves the order andpromotes 

accuracy and large stability region. If the GLM (3) have its diagonal elements unequal and is applied to the IVPs 

(1),theimplicitness arising from the stages can be resolvedusing the Newton Raphson method, 
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To start up the Newton method, anexplicit starter such as RK method with multiple output is required and to obtain accurate 

solution from the output method, we keep doing (6) until 

kiTolYY ii ,,2,1,0;)()1( 
. 

The Tol is the tolerance requested by the user. The converged value of 
)(kY is now the output from the step and 

][ny  is then 

computed in (2). This paper is organized in the following manner. Section 3 show the derivations of the two stagemethods of 

order 6p  and three stage methods of order 9p  and in Section 4 we demonstrates the application of the methods on 

stiff problems of (1). 
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2.0  The construction of TDGLM 
To derive (3) we use the following polynomial interpolant 
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The scale variable t  in (2) is
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xx n 1
, see [1].The structure of the two stage diagonally implicit GLM in (3) is 
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From (7) the coefficients of (8) are as follows: 
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For the output method set t = 1, to obtain 
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The matrix form in (3) of (10) and (11) is now 
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The stability function of the TDGLM (12) is 
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The method (12) is A(
086 )-stable as seen from Fig. 2. 

 

 
Fig. 2: The stability region of the GLM (12). 

The three stage diagonally implicit method in (3) is 
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The coefficients of (13)are 
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The TDGLM representation of (15) - (17) in (3) is now 
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The stability function of (18) is
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The method is A(
050 )-stable, in Fig. 3. 

 

 
Fig. 3: The stability region of the GLM (18). 

 

3.0 Implementation of the methods 
To demonstrate the application of the methods apply the TDGLM in (12) to the following IVPs: 

Problem 1:Linear Problem [1] 

  















].10,0[

,6ee2)(,8)0(,4342

,e-2e)(,1)0(,78

50x-x-

2212

-50x-x

1211

x

xyyyyy

xyyyyy

 
 

Journal of the Nigerian Association of Mathematical Physics Volume 26 (March, 2014), 58 – 65           

-20 0 20 40 60 80 100
-80

-60

-40

-20

0

20

40

60

80

Re(z)

Im
(z

)



65 

 

Third derivative GLM for stiff problems               Okuonghae  and  Ikhile          J of  NAMP 

 

Problem 2:Non-linear problem [8] 
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Find in Tables 1, 2 the numerical results. 

 

 

Table 1: Results for Problem 1 for comparison 

x TDGLM error Ode15serror 

2.0 1.58e - 09 6.78e - 05 

4.0 4.28e - 10 1.28e - 04 

6.0 8.69e - 11 1.41e - 05 

8.0 1.56e - 11 3.52e -07 

10.0 2.65e- 12 1.51e -07 

 

Table 2: Results for Problem 2 for comparison 

x TDGLM error Ode15s  error 

2.0 2.27e - 11 1.39e - 07 

4.0 2.14e - 10 2.50e - 05 

6.0 4.34e - 11 6.13e - 06 

8.0 7.84 e - 12 6.75e -07 

10.0 1.32 e - 12 7.85e -08 

 

It is to be noted that the numerical results in Tables 1, 2 show that the TDGLM (12) outperformed the state of the art Ode15s 

Matlab code considered in [8] on problems 1, 2.  This accuracy is as a result of high order of the TDGLM processes arising 

from the addition of the third derivative terms in their GLM. In fact, multi-derivative GLM are of recent introduction in [1] to 

which the methods therein are of a special case.The methods are with RK stability properties suitable for stiff problems. 
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