Journal of the Nigerian Association of Mathematical Physics
Volume 26, (March, 2014), pp 58 — 65
© J. of NAMP

Third derivative GLM for stiff problems

R. I. Okuonghae and M. N. O. Ikhile

Department of Mathematics, University of Benin, Benin City.
P.M.B 1154, Benin City. Edo State. Nigeria.

Abstract

The need to have L-stablegeneral linear method (GLM) with higher order than
Runge-Kutta methods has provided the need to propose second derivative GLM
(SDGLM) and also multi-derivative GLM.This paper therefore describes somethird
derivative general linear methods (TDGLM)which incorporates up to the third
derivative terms.The methodswhich are diagonallyimplicit areA( & )-stable.
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1.0 Introduction
Recently TDRK methods (Third derivative Runge-Kutta methods) which has a simple transformation to TDGLM were

introduced in [1]for the numerical solution of the initial value problems(I\VVPs) in ordinary differential equations (ODEs)
y' = f(x, y(x)),xe [XO, X], o
Yo=Y(%), YeR", feRxR" m>1

Interestingly, these methods can be derived to possess inherent RK stability [2] and nearly ARK stability [1] properties.In a
related study, Ezzeddine and Hojjati [3] had considered third derivative linear multistep methods (TDLMM) for stiff

problems. In particular, the TDGLM introduced in [1] is
Y. =h Za“) )F/+h? Za(z) F’+hz al’(c +ZuIJ )y =1,

y" =h Zb“’ (t)F/+h? zb<2> (tF’ +th<1> +Zv”()+ yiru, =1, 2
j=1

Y, =y(><n_1+cih), F = F(Xn_1+cih,Y) yl[” Ty Y =y, +th) e =t=1.
In matrix form
hF ¢,
Y A A A U NF g,
(y[”]JZ(Bl B, B, vj = ©
y[n—ll C,

where, N = X, —X_, is the step length, Y = (Y,,Y,,---,Y, )" denotes the stages, the F = (F,,F,,---,F )",
F'= (Fl', F,- F )T , F"= (Fl': Fe FS”)T are first, second, and third derivatives respectively. The

_ _ _ 1\ \T . . . . i
ylu =( =]yl oyt 1]) and y!" =( ol gyl E”]) are the incoming and outgoing approximations
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evaluated at step N —1 and N respectively.
The matrices in (3) are A = {ai‘jl) }e R A = {ai(f) }e R A = {ai(f) }E R® B = {bigl) }e R,
B, = {béz) }e R™) B, = {bif‘)}e R™) U = {uij }e R and V = {Vij }e R™" The stages
Y, = Y(anl +G h)+ O(hq+l)
are of order q.The abscissa vector is C, =[C,, C,,...,C.]" and ¢, €[0, 1].The output method
yn = y(Xn—l + h) + O(h p+1)
is of order p.The dimension of the GLM in (3) is (S+ )X (3S+Tr).An example of theTDGLM (3) is
00 0 O 0 0
A = . A=|1 | A=|1 |, B=010), |32=1 o,B3=l 0l.c=[0 1],
10 5 0 5 0 ' 2 6
U= (1 1)' V=1Y-= (Yl!Yz)T F= (Fl' FZ)T' F’ :(F1” Fz,)T F’ :(Fl’: Fz'”)T :

2 3
z Z
The stability polynomial of this TDGLMis IT(W,z) =w—-1-2 55 The stability polynomial is exactly the same

as that of the classical third order RK method. By implication, this method will behave like the third order RK method. The
interval of absolute stability of this method is (-2.513, 0). The stability plot is given in Fig. 1.
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Fig. 1: The stability region of the GLM (3a).

Im(z), z=), h

The stability matrix of (3) is
w(z)=V + z(B1 +12B, + zzBs)(I -zA -7°A,-7°A)7U, z=/1h, @)
while the stability polynomial is
I1(w, z) = det(Wl —y(2)). )
Definition 1. c.f. [4]: If M(z), known as the stability function, has the special form
T1(w, ) = det(wl —y(z))=w*(W—R(2)),
then the method is said to possess RK stability.
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N(z
For implicit case, R(z) = % , where N(z) and Q(z) are polynomials.If the diagonal elements of the method (3) are
z

equal, we calculate the value of the stability function as the trace of y/(Z) and we find

_ N(z)
R(2)= L-Az-pz®-22%)"

where the humerator satisfies the condition
N(z) = exp(z)(l—lz —uz? —r23)5+0(z P
The values of A, £ ,and 7 which yields a stable methods are determined from the followingE- polynomial formula

E(y) =[1- Ay~ by —e @) -INGF, 2=y

For details see [5] and [6].The example method is explicit; it is suitable for non-stiff IVPs.This paper briefly describes a new
type of diagonally implicit counterpart with unequal elements on the diagonal. Methods of these kinds are in [7]. They are
cheaper and simple to implement when compared with the so called fully implicit methods. One of the motivations for
extending SDGLM to TDGLM is that the additional stage term introduced into the methods improves the order andpromotes
accuracy and large stability region. If the GLM (3) have its diagonal elements unequal and is applied to the I1\VPs
(1),theimplicitness arising from the stages can be resolvedusing the Newton Raphson method,

Yl[r+1] _)Yl[r] — Dla Yz[r+l] —>Y1[r] - Dzl Tt Ys[Hl] _)Ys[r] - DS‘ ©)
where
| — %qul 0O .-+ 0
Dy 50
D2 0 |- 2 ..
A : = (D ; A = 6Y2 !
DS .o
00 --- |- 0P,
oY

S S S r
3N 4(3) 2N L) ) [n-1]
Y, -h*> alF/-h*Y allF/—h> af (e )F; - > u,; V)
i = =i =

S S S r
3N 49 2 @ ® [n-1]
@, | |Y,-h*) aF/-h*} af Ff—hZaz,-(Ci)Fj NN
. =1 j=1 =1 =1

S S S r
3 G r p2 @ o [n-1]
Y.-h*> af'F/-h*> al’F/-h>" a] (c)F, — D ugYs
j=1 j=1 j=1 j=1

To start up the Newton method, anexplicit starter such as RK method with multiple output is required and to obtain accurate
solution from the output method, we keep doing (6) until

HY“*”—Y‘”HsTol; i=0,12, k.

The Tol is the tolerance requested by the user. The converged value of Y s now the output from the step and y[”] is then
computed in (2). This paper is organized in the following manner. Section 3 show the derivations of the two stagemethods of
order p=06 and three stage methods of order p =9 and in Section 4 we demonstrates the application of the methods on

stiff problems of (1).
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2.0 The construction of TDGLM
To derive (3) we use the following polynomial interpolant

N .
y(x)=>0,x. @)
=0

n-1

X
The scale variablet in (2) is , see [1].The structure of the two stage diagonally implicit GLM in (3) is

Yl =h’ al(i) (Cl)Flﬂ+ h? a'l(f) (Cl)F1’+ h 31(11) (Cl)Fl + ull(cl)y[n_l]'
Y = h* (b R+ S (VF;)+ h? (b2 (t)F, + b2 (0)F)

8
@) @) [n-1]
+h (bn (t)Fl + b12 (t)F2)+V11(t)y '
Y, = y(Xn—l + Clh)’ y[n] =Y, = y(Xn—l +th)1 t=c,=1
From (7) the coefficients of (8) are as follows:
2 3
()= @()__ G @ () C _
ayy (Cl)_ G, a; (Cl)_ _?' an (Cl)_ ? ' u11(C1)_1’
For the output method set t = 1, to obtain
3(5¢% — 4cicy + ¢3)
) _ ¢z (5¢1 1C2 2
az1-’(c2) 2(=¢, + ¢,)5
1 ¢, |cf —5¢cc, +10c2c? —5¢,c3 +c;
aélz)(cz):_cz(l_'_ 1( 1 1Y2 1 E 1v2 2) , 9)
(Cl _Cz)
ct 2_6cqc 2
a21(2)(C2) = ‘2(1;);2616_612)24”2)
@ c2(5ct — 20c3c, + 15¢2c? — 6¢,¢3 + ¢3)
a () =—
o 10(c; = ¢,)*

c3(15¢? — 6¢,cy + €2)

c3(=20c3 + 15c%c, — 6¢,c2 + ¢3)
120(_C1 + C2)3 '

120(—c¢; + ¢;)3

, a22(3)(02) =

a21(3)(C2) =

Setting C, =—, C, =1 and t =1 in (9) yields

Al

h® _, h* _, h .
T L R LA 00

yi = h{l Fl"+i Fz”j+ h{ﬁ F{—i Fz’j+ h(@ F s F, [+y", p=6.a1

810 405 405 810 243 243
The matrix form in (3) of (10) and (11) is now
Alwo e | AT N6 a7 AT ) @
243 243 405 810 810 405

T
":F 1} | a:@ ﬁ), B, :(ﬁ _3_7) BS:(L LJ,
4 243 243 405 810 810 405
U=@ 1).v=1Y=WY,) F=(RF) F=FF) F=FF).
The stability function of the TDGLM (12) is
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933120+381120z + 66024 z* +5634 7°

933120-552000 z +151464z% - 25350 z° + 2738 z* -1832° + 6 2°

The method (12) is A(86°)-stable as seen from Fig. 2.
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Fig. 2: The stability region of the GLM (12).
The three stage diagonally implicit method in (3) is

Y, =h*a®(c, )F/+h?a?(c, )F/+ ha®(c,)F, +uj,(c, )y™™,
Y, =h? (afl) (c,)F"+a% (cZ)FZ”)+ h? (agzg (c,)F/+ald(c,)F, )
+h (aélf (c, )R, +b (c, )F, )+ Uyy(c, )y,
Y = 0° (o (R b (OF+ b (1)F:)
+h? (6P () + b2 (OF; + b2 ()F;)
+h (bﬁ) (t)F, +b(t)F, +b? (t)F3)+ vy, (t)y™™,
Note that :
Y, =y(x_,+ch), Y,=y(x_,++c,h), y"m=Y,=y(x_,+th), c,=t=1

The coefficients of (13)are

2 3
al(?(cl)zcr aﬁ)(cl):—%, al(i)(cl)zi’ ull(cl)zl’

(13)

6
c(5¢% — 4¢yc, + ¢2
4y D(cy) = 7(5¢f — 4ccp +c5)
2(—¢; +¢)°
1 C (c“ —5¢c3c, +10c2c? —5¢.c2 +c4)
1
agz)(cz)zzcz 14+ 21 12 1 é 12 T2 ) (14
(Cl _Cz)
@) (o) = 2(10ci-6c1ca+cF)
@21 (C2) = 10(cy—cp)*
4y, @ (c,) = _022(5Cil —20c¢ic, + 15¢fcs — 6cic3 + ¢3)
22 2 10(C1 — C2)4
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c; (15¢% — 6¢1Cy + €5) c3(—=20¢} + 15¢fc, — 6¢1c5 +¢3)

(©) = ©) =
@217 () 120(=c, + 67 %22 (&) 120(—c; + ¢y)°
For the output methodfix C; = E C, = 5 , C; =1in (13) to obtain the following coefficients:
Wy — _
b V() = T5978063a88 5125t (3725120 + (5283600 + £(63729680

+£(—374904950 + 3t(328548304 + 5t(—93458120 +
+9t(8370704 + 35t(—103299 + 18640t)))))))),

1
b, M (t) = — 55g £(263 + £(~6720 + £(84560 + £(~538160 +
3t(552538 + t(—923776 + 45t(19208 + 5t(—1896 + 385t)))))))),

1
b,sP(t) = TE05o077 (4523456 + 27t(—4302480 + (54577040 + £(~352213190
+9¢(123524464 + t(—210857528 + 15t(13366672 + 105t(—63609 + 13040t)))))))),
1
by P (t) = ——————625t(—42560 + (92400 + t(3870160 + t(—22110550
1 (0 522764928 ( + +i( +(

+3t(18210248 + 5t(—4954600 + 9t(430048 + 35t(—5187 + 9201)))))))),

by, P (t) = —t(400 + t(—10380 + (133840 + t(—887950 + 3t(978992
+5t(—347956 + 45t(7568 + 5t(—771 + 1601))))))))/(9720),

@y — _ _ _
bis®(8) = — T5meres (414400 + £(~10655120 + 27¢(5015920 + £(~32488050 +

£(103273688 + 15t(—11861752 + 45t(253376 + 35t(—3661 + 760t)))))))),

by, @ (¢) = 125t(2240 + t(—42000 + (353360 + t(—1356950 + 3t(957208
+5£(—239960 + 9t(19808 + 35¢(—231 + 401))))))))/(74680704),

b, (t) = —t(280 + t(—7140 + £(89530 + t(—565810 + 3t(571802 +
5t(—186172 + 45t(3746 + 35t(—51 + 10t))))))))/(34020),
b1 () = t(6720 + t(—173040 + (2204720 + 27t(—531230 + (1703352
+5t(—593768 + 45t(12864 + 35t(—189 + 40t))))))))/(4609920).

1
Setting C, =—, C, = E C; =land t =1 in (14) gives
15 3

1 1 1
Y, =h’ ———F/"|-h?*| —F/|+h| =F [y"1, p=3, 15
! (20250 J (450 lj (15 Jy P (1)
=h3( 110 Fr. 106 F;’]+h2[ 2000 F 2122 Fz’)
59049 59049 50049 * 59049
h( 65000 - 53098 F2j+y[”‘”,
177147 * 177147
[”]=h3( 59875 Ere 389 Er 5311 F”}Lhz( 10061875 Ero 179 £ 305989 F,j
17)

2
(16)

p:6,

74680704 ' 34020 > 4609920 ° 522764928 ' 9720 * 10756480 °

h[ 3345709375 F, +% F,— 2255191 Faj v D=9,
10978063488 729 15059072
The TDGLM representation of (15) - (17) in (3) is now
S 0 0 1 0 0
15 450
A = 65000 53098 0 VA = 2000 2122 0 (18)
177147 177147 59049 59049
3345709375 616  —2255191 10061875 179 305989
10978063488 729 15059072 522764928 9720 10756480
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Ly 0
20250
110 106 3345709375 616 —2255191]

= 0 , =
A 59049 59049 ' (10978063488 729 15059072
59875 389 —-5311

74680704 34020 4609920

10061875 179 305989 59875 389 —5311 1 2 !
BZ = , 83 = y C= 1 ]

- (522764928 9720 10756480 74680704 34020 4609920 15 3
U=@ 1 1),v=1Y=(YY,Y,) . F=(F,F,F). F=(F,F,FE) ad F"=(F"F,F)) .
N(z)
Qz)
N(z) = 810304588628640000 + 634751998657692750z + 2091982689242734502>
+3933218411347329023 + 4658412195637140z* + 352149979888728z2° + 1570818317770826,
2(z) = 810304588628640000 — 175552589970947250z — 204014354190993002>

+124591497466062152 — 2103946039121550z* + 1887101405966582°
—101484085803152° + 3437059003662 — 74240961062° + 827560022°.

The method is A(50° )-stable, in Fig. 3.

The stability function of (18) isIT(w,z) =
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Fig. 3: The stability region of the GLM (18).
3.0 Implementation of the methods

To demonstrate the application of the methods apply the TDGLM in (12) to the following IVPs:
Problem 1:Linear Problem [1]

yl’ = _8y1 + 7y2| y(O) =1, Y1 (X) =2e™ - e-50x’
Y, =42y, —43y,, y(0)=8, y,(x)=2e>+6e°",
x € [0, 10].
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Problem 2:Non-linear problem [8]

y, =-10004y, +10000y3, y,(0)=1, vy,(¥) =e™,

Y, =Y - Y, (1+Y3), y,(00=1, y,(x) =e*,
x €[0,10].

Find in Tables 1, 2 the numerical results.

Table 1: Results for Problem 1 for comparison

X TDGLM error Odel5serror
2.0 1.58e - 09 6.78e - 05
4.0 4.28e - 10 1.28e - 04
6.0 8.6% - 11 1.41e - 05
8.0 1.56e - 11 3.52e -07
10.0 2.65e- 12 1.51e -07
Table 2: Results for Problem 2 for comparison
X TDGLM error Odel5s error
2.0 2.27e-11 1.39 - 07
4.0 2.14e - 10 2.50e - 05
6.0 4.34e - 11 6.13e - 06
8.0 7.84e-12 6.75e -07
10.0 1.32e-12 7.85¢e -08

It is to be noted that the numerical results in Tables 1, 2 show that the TDGLM (12) outperformed the state of the art Odel15s
Matlab code considered in [8] on problems 1, 2. This accuracy is as a result of high order of the TDGLM processes arising
from the addition of the third derivative terms in their GLM. In fact, multi-derivative GLM are of recent introduction in [1] to
which the methods therein are of a special case.The methods are with RK stability properties suitable for stiff problems.
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