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                       Abstract 
 

This paper derived optimal expressions for solution matrices for single – delay 

autonomous linear differential equations with an accompanying corollary, on arbitrary 

intervals of length equal to the delay h , for non –negative time periods. The formulation 

and the development of the main result exploited an earlier work in [1] on the interval [0, 

4h]. The proof was achieved using combinations of summation notations, integrals, 

change of variables technique, as well as the method of steps to obtain these matrices on 

successive intervals of length equal to the delay h. By exploiting above results, the paper 

obtained the solution of an initial function problem, as well as interrogated its 

smoothness disposition. The obtained results globally extend the time scope of 

applications of solution matrices to the solutions of initial function problems, rank 

conditions for controllability and cores of targets, constructions of controllability 

Grammians and admissible controls for transfers of points associated with controllability 

problems. 

 

 

 

1.0    Introduction 

The qualitative approach to the controllability of functional differential control systems have been areas of active 

research for the past fifty years among control theorists and applied mathematicians in general. This circumvents the severe 

difficulties associated with the search for and computations of solutions of such systems. Unfortunately computations of 

solutions cannot be wished away in the tracking of trajectories and many practical applications. Literature on state space 

approach to control studies is replete with variation of constants formulas, which incorporate the solution matrices of the free 

part of the systems [2 - 9]. Regrettably no author has made any attempt to obtain general expressions for such solution 

matrices or special cases of such matrices involving the delay, h . The usual approach thus far is to start from the interval 

[0, ]h  and compute the solution matrices and solutions for given problem instances and then use the method of steps to 

extend these to the intervals [ ,( 1) ],kh k h for positive integral k , not exceeding 2, for the most part [10] and [8].  Such 

approach is rather restrictive and doomed to failure in terms of structure for arbitrary k . In other words such approach fails 

to address the issue of the structure of solution matrices and solutions quite vital for real-world applications. The need to 

address such short-comings has become imperative; this is the major contribution of this paper, with limitations to scalar 

equations and wide-ranging implications for extensions to systems and holistic approach to controllability studies. 

 

2.0 Theoretical Analysis

 

We consider the class of single-delay differential equations:  

                

( ) ( ) ( ), (1)x t ax t bx t h t   R  

where and a b are arbitrary constants.  Let ( )k iY t ih  be a solution matrix of (1) 

on the interval [( ) ,( 1 ) ], {0,1, }, {0,1},  wherek iJ k i h k i h k i      
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Note that ( )Y t is a generic solution matrix for any .tR  The solution matrices will be obtained piece – wise on successive 

intervals of length .h  
 Preliminary lemma: 
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Proof 

On (0, ),h
1( ) 0 ( ) ( ) a.e. on [0, ] ( ) ( ) ; (0) 1 1atY t h Y t aY t h Y t Y t e c Y c         

0( ) on [0, ]. (5)AtY t e J h    

Consider the interval [ ,2 ].h h  Then on ( ,2 ),h h

( ) ( )(0, ) ( ) ( ) ( ) ( ) ( )a t h at at a t hd
t h h Y t aY t be e Y t e Y t aY t be

dt

                  

( ) ( )( ) ( ) ( ) ( ) ( )

t

at at at a t h at ah as a s h

h

d
e Y t e Y t aY t e be e Y t e Y h e be ds

dt

                     

( ) ( ) ( )( ) ( ) , on [ ,2 ].

t

a t h a t s a s h

h

Y t e Y h e be ds h h       

    

( ) ( ) ( )

1( ) ( ) ( ) , ; (6)

t

ah at a t s a s h at a t h

h

Y h e Y t e e be ds e b t h e t J           

   
Consider the interval 2 [2 ,3 ];J h h  then 2[2 ,3 ] [ ,2 ] [ ,2 ].t h h t h h h s h h h      

 

1 1

2

(2 ) ( )2

1By the continuity of ( ), (2 ) .

h

a h s a s hha

h

Y t Y h e e be ds 
    Therefore,

 

                

(2 , 3 ) ( ) ( ) ( ) ( ) ( )at atd
t h h Y t aY t bY t h e e Y t bY t h

dt
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h h
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This completes the proof. 

From our investigation of emerging patterns for ( )Y t on [0, 3 ],h we state as follows: 

 

 

Theorem  
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Proof 

The theorem is valid for {0,1}k as earlier established. Assume the validity of the theorem for 0 k p  for some 

integer 2p  . Consider the interval 
1, 1.Then .p pJ p t h J    Hence 

( ) ( )

1

( ) ( ) , , 1, (10)
!
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a t h a t h ih i
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by the induction hypothesis. Hence on 
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      .  Clearly ( ) ( [ 1] ).b t h bph b t p h        

Therefore,  

1
( )

1

1

( ) ( ) , , completing the proof of the theorem.
!
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The usefulness of this theorem can be seen from its application in the variation of constants formula to obtain the solutions of 

initial function problems of scalar type. Consider the following problem: 

     1 , [0, 2] (16)x t ax t bx t t      

                                   
     1 , 1, 0 (17)x t t t t    

 
The Variation of Constants formula for (1) is given by: 

                     

0

1( ) ( ) (0) ( ) ( ) , 0 (18)
h

x t Y t Y t s h A s ds t 


       

There is no direct straight-forward application of the above formula in one fell swoop– a fact that is hardly emphasized by 

control practitioners. The method of steps must be applied by reasoning as follows: 

 

01; [ 1,0] 1 [ 1, 0]; 1 [ 1, 1]; 0 1 1 iff 2 1

1 1,for the feasibility of .

h s s t J t s t s t s t
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The following analysis is imperative for 11, [ 1, 0] and  :h s t J      

11; [ 1,0] 1 [0,1]; 1 [0,2]; 1 1 iff 2. Thus

1 1 iff [ 1, 2], and 1 1 iff [ 2,0].

h s s t J t s t s s t
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 Interrogation of smoothness of solutions  

1Let  ( ) denote the solution of (16) and (17) on , {1,2, };  then 0k ky t J k a  

1 2
0 0

lim ( ) 1 ; lim ( ) 1
t t

b b
y t a a t

a a


  

 
        

 
non-smoothness of the solution 0.t 

2 1 2 12 2
1 1 1 1

lim ( ) 1 ; lim ( ) 1 lim ( ) lim ( )a a

t t t t

b b b b
y t ab a e y t a e y t y t ab

a a a a      

   
             

      

  the solution 

is not differentiable at 1t   lack of smoothness property at 1.t 

 Case 0.a   

0 ( ) ( 1), 0; ( ) ( ) 1 , [ 1,0].a x t bx t t x t t t t           Hence 

2

1 0

1
( ) ( ) , .

2
x t bt x t bt d t J      The continuity condition (0) (0) 1x    

2

1 1 0

1
1 ( ) ( ) 1 on .

2
d x t y t bt J       

On (1, 2), 
2 2 2 3

2 2

1 1
( ) ( 1) ( ) ( ) ( 1) .

2 6
x t b t b x t y t b t bt d         The continuity condition 

2 3

2 1 2 2 1

1 1
(1) (1) 1 ( ) ( 1) 1,on .

2 6 2

b
y y d b y t b t bt J         

2 1
1 1

lim ( ) ;lim ( )
t t

y t b y t b
  

   the solution 

has the derivative b  at 1.t   

Also 1
0 1

lim ( ) 0; lim ( ) 1
t t

y t t
  

   the solution has no derivative at 0.t   

We proceed to investigate the analyticity or otherwise of the solution matrices. We reason as follows: for arbitrary 

delay 0,h   

 

( )

( )

( ) , on [0, ]; ( ) ,on (0, ); ( ) ( ) on [ ,2 ]

( ) 1 ; lim ( ) , lim ( ) lim ( ) lim ( ).

at at at a t h

at a t h ah ah

t h t h t h t h

Y t e h Y t ae h Y t e b t h e h h

Y t ae b ah at e Y t ae Y t ae b Y t Y t
   





   

    

         

  

Therefore ( )Y t does not exist at .t h In other words ( )Y t  is not differentiable at t h and hence not analytic there. Also  

0 0 0 0
( ) 0, for 0 ( ) 0,on ( ,0) lim ( ) 0; lim ( ) lim ( ) lim ( ).

t t t t
Y t t Y t Y t Y t a Y t Y t

      
         

Therefore the analyticity of ( )Y t also fails at 0.t   ( )Y t  is not analytic at ,t ph {0,1,2, }.p See [11] for 

discussions on analytic functions. 

Next we investigate the singularity of ( ) :Y t ( )Y t
 
is singular if 

( ) 1 1
( ) 0, iff = +he , for some [ ,2 ]

ah
at a t h ahbhe

e b t h e t t h h
b b


 

     . Let us examine the 

feasibility of such t  value.   

   
1 1 1 Ln(2)

2 iff , 0, , 0.
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Such choice of b is certainly feasible; for example 
1 1

1 1
1, 1 .

2 1
a h b

e e 
    

 
 Therefore in general ( )Y t  is 

singular for .t h  Note that ( )Y t  is nonsingular for (0, ],t h and 

by construction continuous except at 0, noting that 
0

0, 0
lim ( ) 0,since ( )

1, 0t
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Y t Y t
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0
and lim ( ) (0) 1.
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Y t Y


   

Corollary to the theorem 
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h
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 This is consistent with  (22).   

The following analysis is imperative for 1[ , 0] and  :s h t J     

1[ ,0] [ ,0]; [0,2 ]; iff 2 . Thus

iff [ , 2 ], and iff [ 2 ,0] [ ,0].

s h s h h t J t s h h t s h h s t h

t s h h s h t h t s h h s t h s h
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2 2
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2! 2!

1 1 ( ) .
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b t h b h t b t h b t h t h t h h

b t b b
bt b ht h bt t h

  



 



 

       

            

   
           
   

 

 

Therefore the corollary is valid for 1.t J  The rest of the proof is by induction. 

 

1Assume that the corollary is valid for 1 ,for some integer 2.Then for ,kp k k t J    

 
1[ ,0] [ , ( 2) ] ; iff ( 1)

iff ( 2) . Thus  ( 2) 0,  for -feasibility.

k k ks h t s h kh k h J J t s h J t s h k h

s t k h t k h s s

               

      
 

1 iff ( 1) iff ( 2) .Thus ( 2) ,kt s h J t s h k h s t k h h s t k h              
 

for s - feasibility. Hence this analysis combined with expression (9) of the theorem and the variation of constants formula 

(18) yield the following expression for the solution: 
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By change of variables, 
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i i

x t
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i i

  
  

 

 


   

           
    

 
 

Therefore the corollary is valid for 1kt J  , completing the proof. 

 

Conclusion 
This paper has established the structure of solutions matrices for scalar delay differential equations, without which 

the variation of constants formula would be doomed. It has also elucidated the computational procedure for initial function 

problems. The method of proof can be exploited to extend the results to systems with arbitrary continuous initial functions. 
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