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                       Abstract 
 

The importance of convex functions in optimization theory calls for the availability 

of results that ensure their easy recognition. In response to this demand this work 

presents a characterization which gives an interplay associated with the first order 

condition, the second order condition, the epigraph, the integral and monotonicity for 

convex functions. Specifically, it presents a characterization of convex functions by 

extending an existing result to include the Hessian and epigraph of convex functions; 

thus providing an equivalence for the definitions of convex functions, and consequently 

a better horizon for understanding convex functions. 
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1.0    Introduction 

The theory of convex functions is very important in many real-world problems. For instance, constrained control and 

estimation problems are convex. In this work we will promote these concepts and thus provide a better horizon for 

recognizing convex functions. 

Now, let us consider the following definitions which are fundamental to the comprehension of this work. 

 

Definition 1.1  Let the set      . If for any         we have that 

                                             (   )        ,   -                                                       ( ) 

then   is said to be convex [1,2,3]. 

It follows that   can have no re-entrant corners. This means that for any two points       , the line segment joining   and 

  is entirely contained in  . It also states that     is path-connected. That is two arbitrary points in   can be linked by a 

continuous path. A more general definition of convex set which readily follows is that                  

                                                             ∑    

 

   

                                                                                 ( ) 

where  ∑       
        . The vector   in (1) or (2) is referred to as a convex combination of the points            . 

Definition 1.2  Let       be a nonempty convex set. A function         is said to be  convex on   if for any 

       and all       , we have  

                                          (   (   ) )    ( )  (   ) ( )                                               ( ) 

If strict inequality holds in (3) for all      , then   is called a strict convex function [1,2,4]. 

The geometric interpretation of convexity is simple. For a convex function the function values  are below the 

corresponding chord, that is, the values of a convex function at points on the line segment    (   )  are less or equal to 

the height of the chord joining the points (   ( )) and (   ( )). 

A function is convex if and only if it is convex when restricted to any line that intersects its domain. Rephrased,   is 

convex if and only if for all     and for all  , the function  ( )   (    ) is convex on *        +. This property 

is very useful in testing whether a function is convex by restricting it to a line.  

Note: If   is convex (strictly convex) function then  –    is a concave (strictly concave) function. 
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Definition 1.3  Let        be a nonempty set, and        . The epigraph of   is a subset of         defined by 

                                              *(   )   ( )                 +                                                   ( ) 

Definition 1.4  A function is concave if and only if its hypograph, defined as  

                                               *(   )   ( )                 +                                                  ( ) 

is a convex set. 

The link between convex sets and convex functions is via the epigraph: A function is convex       if and only if its epigraph is 

a convex set [5,6]. 

 

2.0  Jensen’s Inequality and Extensions 
The basic inequality (3), that is  

 (   (   ) )    ( )  (   ) ( )  
is sometimes called Jensen’s Inequality. It is easily extended to convex combinations of more than two points: If   is convex, 

                                        then  

                                            (           )     (  )       (  )                                      ( ) 

As in the case of convex sets, the inequality extends to infinite sums, integrals, and expected values. For example, if  ( )  

        
 
  ( )      then  

                                                        (∫  ( )   
 

)  ∫  ( ) ( )  
 

                                                 ( ) 

provided the integrals exist. In the most general case we can take any probability measure with support in  . If   is a random 

variable such that     with probability one, and   is convex, then we have  

                                                                        (  )    ( )                                                                      ( ) 

provided the expectations exist. We can recover the basic inequality (3) from this general form, by taking the random variable 

  to have support *   +, with     (   )   ,     (   )       
Thus the inequality (9) characterizes convexity: If   is not convex, there is a random variable     with probability one, 

such that  (  )    ( ). 

All of these inequalities are now called Jensen’s Inequality, even though the inequality studied by Jensen was the very simple 

one 

                                                                   (
   

 
)  

 ( )   ( )

 
 , -                                                 ( ) 

 

3.0 Gradient and Hessian Matrices of Several Variables Functions                                                                                    
Convex functions need not be necessarily differentiable however differentiable convex functions can be characterized using 

their gradient vectors and Hessian matrices. 

 Now a continuous function        is said to be continuously differentiable at     , if .
  

   
/ ( ) exists and is 

continuous,         . 

Definition 3.1  The gradient of   at   is defined as 

                                                ( )  (
  

   

( )   
  

   

( ))

 

, -                                                      (  ) 

If   is continuously differentiable at every point of an open set      , then   is said to be continuously differentiable on   

and denoted by      ( )  

A continuously differentiable function         is called twice continuously differentiable at      if   
   

      
( ) exists 

and is continuous,        . 

Definition 3.2  The    -symmetric matrix 

                                                ( )  (
   ( )

     

               )                                                    (  ) 

of all second-order partial derivatives evaluated at   is called the Hessian of   at   [7].  

For example, consider the function 

                                  ( )                   
 
   

                                  (12) 

where    (        ) 

  ( )  (
                    

  
 

              

   

) 
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and 

  ( )  (
                   

    
 
     

 
                  

                                
    

) 

If     is twice continuously differentiable at every point in an open set     , then   is said      to be twice continuously 

differentiable on   and is denoted by    ( )( ). 

Definition 3.3 Let        be continuously differentiable on an open set     . Then for     and       
  , the directional derivative of   at   in the direction   is defined as 

  (   )     
   

 (    )   ( )

 
   ( )    

where   ( ) is the gradient of   at  , an     vector. 

For any      , if     ( ), then 

                                                                ( )   ( )  ∫   ( )  
 

 

                                                     (  ) 

Thus 

                                                ( )   ( )    ( ) (   )   (   )                                   (  ) 

Similarly, for          with   (   ) we have   

                                                   ( )   ( )    (   (   )) (   )                                      (  ) 

or 

                                                ( )   ( )    ( )(   )   (     )                                    (  ) 

Definition 3.4  Let             and      , then    is monotone on    if for any         

                                                            ( ( )   ( ))
 
(   )                                                          (  ) 

and    is strictly monotone on   if for any               

                                                             ( ( )   ( ))
 
(   )                                                         (  ) 

Definition 3.5  A symmetric matrix   is called:                                                                                                    

 (i)  Positive definite if for all            . (If     is positive definite,        

we say   is negative definite).                                                                                                                                                

(ii) Positive semidefinite (or nonnegative definite ) if for all                            

         (If     is nonnegative definite, that is         for all  , we say that   is negative semidefinite or 

nonpositive definite)[7,8].  

 

4.0 Characterizations of Convex Functions                                                                                    
Now consider the following characterizations which help in defining convexity. 

Theorem 4.1 First Order Characterization of Convex Functions                        

  Let         be a nonempty open convex set and        be a differentiable function, then:                                                                                                                     

(i)   is convex if, and only if, for any       

                                                   ( )   ( )    ( ) (   )                                                           (  ) 

(ii)   is strictly convex on   if, and only if, for any        with     

                                                   ( )   ( )    ( ) (   )    ,      -                                        (  ) 

Theorem 4.2 Monotonicity Characterization of Convex Function 

Assume that             is differentiable on the convex set  . Then    is convex on   if and only if its gradient     is 

monotone, that is 

                                                    (  (  )    (  ))
 
(     )                                                      (  ) 

for any        . 

   is strictly convex on     if and only if its gradient      is strictly monotone, that is 

                                                    (  (  )    (  ))
 
(     )                                                      (  ) 

for any        ,       [10]. 

Although these characterizations define convexity, characterizations which combine them will place us at a better view-point. 

This will enhance easy recognition of convex functions. This is achieved in the following result [11]. 
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Theorem 4.3 Characterization of Convex Functions through the Derivative and the Integral                                                                                                                                         

Suppose          ,      ( )  and       is open and convex, then the following statements are equivalent.                                                                                                                       

(i)    is convex.                                                                                                                                             

 (ii)     is monotone.                                                                                                                                 

 (iii)  ( )   ( )     ( )  
 

 
        .                                                                                                    

 (iv)  ( )   ( )    ( ) (   ). 

An important inference from the last result is that a presentation with any of (i) to (iv) without a pre-information on the 

nature of the function does not only imply that the function is convex but also a presentation with (i) to (iv). 

The next two results involve the second order (Hessian) and epigraph characterizations of convex functions. They will be 

used to extend Theorem 4.4. 

Theorem 4.4 Second Order Characterization of Twice Continuously Differentiable Convex Functions 

Let      be a nonempty open convex set and let        be a twice continuously differentiable function, then    is 

convex if, and only if, its Hessian matrix is positive semi-definite at each point in   [10]. 

Theorem 4.5 Epigraph Characterization of Convex Functions                                                            

 Let        be a nonempty convex set, and        . Then   is convex if, and only if the epigraph of   is a convex set [5, 

10]. 

Remark 4.6  
Many results for convex functions can be proved (or interpreted) geometrically using epigraphs, and applying results for 

convex sets. As an example, consider the First Order Condition for convexity: 

 ( )   ( )    ( ) (   ) 

where   is convex and      . We can interpret this basic inequality geometrically in terms of epi : If (   )      , then  

                                                          ( )   ( )    ( ) (   )                                               (  ) 
We can express this as  

                                             (   )       0
  ( )

  
1
 

.0
 
 
1  0

 
 ( )1/                                       (  ) 

This means that the hyperplane defined by (  ( )   ) supports epi  at the boundary point (   ( )). 

 

5.0 Characterization of Convex Functions Through the Epigraph, Gradient, Integral, 

Monotonicity and Hessian.  
We now present a characterization of convex functions which extends the main result in [9] to the Hessian and epigraph. 

Theorem 5.1 Suppose          ,      ( )  and       is open and convex, then the      following statements 

are equivalent:                                                                                                 

 (i)  (   (   ) )    ( )  (   ) ( ),      (   )                                               (25)                                                                                                                      

(ii) (   (   )      (   )  )                                                                         (26)                            

  for       and (    ) (    )      .                                                                                                                                               

(iii)  ( )   ( )    ( ) (   ),                                                                                     (27)                

(iv) (  ( )    ( ))
 
(   )   ,                                                                             (28) 

(v)  ( )   ( )     ( )  
 

 
        .                                                                             (29)                     

(vi)     ( )                 .                                                                                 (30) 

Proof:  We shall show that (i)   (ii)   (iii)   (iv)   (v)   (vi)   (i) 

(i)  (  ).Suppose   is convex and let       and (    ) (    )      , then for any   (   ) we have  

                                (   (   ) )    ( )  (   ) ( )      (   )                     (  ) 

Since   is a convex set (   (   ) )   . Therefore  
                                               (   (   )         (   )  )                                              (  ) 

which means      is convex. 
(ii)  (   ). Since      is convex 

(   (   )       ( )  (   ) ( ))       
   (   (   ) )    ( )  (   ) ( )    ( )   ( )    ( ) 

 (   (   ) )   ( )

 
  ( )   ( )  

As    , we have  

  ( ) (   )   ( )   ( )  
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(iii) (  ). Now 

                                                            ( )   ( )    ( ) (   )                                                   (  ) 
so that 

                                                            ( )   ( )    ( ) (   )                                                   (  ) 
Summing (33) and (34) we have  

                                                           (  ( )    ( ))
 
(   )                                                      (  ) 

(iv)  ( ). Since    is monotone, for any         with  

     (   )             (   )   
we have  

(  ( )    ( ))
 
(   )  (  ( )    ( ))

 
(   )    

   ( ) (   )    ( ) (   )    ( ) (   )    ( ) (   )    

  ( )   ( )   (‖   ‖)   ( )   ( )   (‖   ‖)    ( ) (   ) 
By the mean value theorem 

 ( )   ( )  ∫   ( )  
 

 

  ( )   ( ) 

                                                      ( )   ( )     ( )  
 

 
.                                                    (36) 

(v)  (  ). Since  ( ) is twice continuously differentiable at     it follows that 

 ( )   ( )    ( ) (   )  
 

 
(   )   ( )(   ), 

  ( )   ( )    ( ) (   )  
 

 
(   )   ( )(   )  [By (v)] 

  ( ) (   )    ( ) (   )  
 

 
(   )   ( )(   ) 

   ( ) (   )    ( ) (   )    ( ) (   )                                

                                                                 
 

 
(   )   ( )(   ) 

 ( )   ( )   (‖   ‖)  * ( )   ( )   (‖   ‖)+ 

                         ( )   ( )   (‖   ‖)  
 

 
(   )   ( )(   ) 

                       
 

 
(   )   ( )(   )   ( (   )‖   ‖)    

since (   )   , 

                                                       
 

 
(   )   ( )(   )                                               (37) 

(vi)  ( ). Now  

         ( )   ( )    ( ) (   )  
 

 
(   )   ( )(   ) 

        ( )    ( )     ( ) (   )  
 

 
 (   )   ( )(   ) 

(   ) ( )  (   ) ( )  (   )  ( ) (   ) 

                                                       
 

 
(   )(   )   ( )(   ) 

Since   ( ) is positive semidefinite, at each point in   

  ( )  (   ) ( )   ( )    ( ) ,      (   )(   )- 

                                                                    (   (   ) )                                                   (38)  

Thus we are done. 

Remark 5.2                                                                                                                                                    

This result shows the inter-connectivity among convexity and some useful concepts in optimization theory. We observe 

that any convex function can be described by an epigraph which consists of a set of points above the graph as well as fit 

exactly into the graph of the function which in this case (of convex function) is convex. A geometric interpretation of the 

third statement is that at any point the linear approximation based on a local derivative is a lower estimate of the function.  
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That is, a function whose epigraph is convex always lie above its tangent at any point. Such a tangent is called a supporting 

hyperplane of the convex function. It is a known fact that the gradient of a real-valued convex function of single variable is 

non-decreasing (monotone). This is also the case with several-variable function as indicated (in the fourth statement) that if a 

function always lie above or along its tangent at any point then the function is monotone. In fact, for the directional 

derivatives, this fact can also be proved to hold for non-differentiable convex functions. The integral of this gradient between 

any two points along any line is the same as the difference in the value of the function between the two points along this line. 

Finally the last statement can be interpreted geometrically as a requirement that the graph of the function have positive 

(upward) curvature at each point of the domain of the function. Thus this characterization gives equivalence for the 

definitions of convexity for real-valued convex functions of several variables. 

 

6.0 Conclusion                                                                                                                                         
As indicated above any function which satisfies any of the defining properties above equally satisfies all the other 

properties. Thus we are spared the problem of much guessing about the convexity of a function since we need not depend 

only on the conventional definitions. This result shows that if a given definition cannot be incorporated into a given scheme 

we can resort to another. Thus it serves as a safe haven for many computational schemes. It further suggests that a given 

scheme can be refined to incorporate a desired definition or concept. This results from the interplay among these concepts. 

As indicated earlier these defining properties of convex functions already exist in optimization materials, however this 

characterization which combines these properties, thereby giving a wider definition of convexity has not been achieved. Thus 

this work places us at a better horizon for recognizing convex functions. 
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