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1.0    Introduction 

Over the last few decades, there has been a great interest in the modeling and analysis of problems arising in commodity 

markets. Some of these problems are modeled in terms of evolution equations such as partial differential equations. 

Symmetry analysis is, however, one of the many methods of solution of a partial differential equation. A number of studies 

have been devoted to the use of symmetry techniques for partial differential equations arising in the field of financial 

mathematics [1–4]. 

The aim of this paper is to show that evolution equations with similar Lie algebra as the heat equation can be 

transformed to the heat equation. This may be achieved via appropriate isomorphism upon their algebras or by a coordinate 

transformation. Our approach exploits the later. It is well known that the main aim of transforming any equation into a 

diffusion equation is to find a form where a relatively easy solution exists.  

A typical example of an evolution equation relevant to this study is given in Section 3 in order to appreciate the 

algorithm involved in finding solutions through the symmetry method. We start by defining the evolution partial differential 

equation. 

Definition 1 (Evolution equation) An evolution partial differential equation is an equation involving an unknown 

function of several variables that includes time, t, as one of the independent variables. 

In particular, a second-order evolution partial differential equation in one dependent and two independent variables is an 

equation of the form 

 (               )           (   )                                       (1) 

where, as is indicated, the independent variables x and t lie in some given domain        By this definition, u, is the 

dependent variable while the x – t domain D in   , where the problem is defined, is called the space-time domain. By a 

solution of (1) we mean a twice continuously differentiable function  ,u u x t  defined on D which, when substituted into 

(1), reduces (1) to an identity on the domain D. The function  ,u u x t is assumed to belong to a set of all twice 

continuously differentiable functions on   that vanish at infinity so that calculating its first and second derivatives and 

substituting them into (1) is defined.  

 

2.0 Preliminaries of Lie Group of Transformations 

Consider    (   )  that is to say 

 
 , , .f f x t u

 (2) 
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If :f X u is a smooth function from       t         so that  u f x  ( ),..., ( )qf x f x is a partial 

differential equation with q dependent variables (here u is the only dependent variable) and p independent variables. We let p 

= 2 such that x and t here represent the two independent variables. Then the general vector field on         . Here a 

point transformation is a diffeomorphism 

 
        ˆˆ ˆ: , , , , , , , , , , .x t u x x t u t x t u u x t u

                    (3) 

This transformation maps the surface ( , )u u x t to the surface parameterized by x and t as follows            

           

 ̂   ̂(     (   ))

 ̂   ̂(     (   ))

 ̂   ̂(     (   ))

}                                                                                      (4) 

The infinitesimal transformations of these variables in Taylor series for the Lie group action [5, 6] are 

 ̂      (     )   (  )         

 ̂      (     )   (  )         

 ̂      (     )   (  )         

}                                                    (5) 

with the vector fields which span the associated Lie algebra, called the generators of the infinitesimal  transformation (5),  , 

so that  

   (     )
 

  
  (     )

 

  
  (     )

 

  
                                                    (6) 

and 

 ̂  (    )      

 ̂  (    )      
 ̂  (    )      

}                                                                                    (7) 

In particular the components of    at  , ,x t u  are  

 (     )  
  ̂

  
|
   

      (     )  
  ̂

  
|
   

     (     )  
  ̂

  
|
   
                                (8) 

Notice that ,  and     occur in the definition of    called coefficient functions.  

 

3.0 The Lie Point Symmetries of given PDE  

The general form of the model of interest given in [7] is 

 

 
    

   (    )

   
  (   (    )  )

  (    )

   
 
  (    )

  
      (    )                             (9) 

with boundary condition for the value at maturity  

 (    )    p(     )                                                                                                       (10) 

For simplicity and without loss in generality, we let                 so that  (    )   (   ), hence (9) becomes  
  

  
  

 
   

   

   
 (   (   ) )

  

  
                                                                   (11) 

The computation of Lie point symmetries is algorithmic [8] but for this work we present results obtained through the package 

SYM [9, 10] which was used interactively with MATHEMATICA 6.0 for the analysis which results we present below. 

As we saw in Section 2, determining the Lie point symmetries means finding the functions 

 (     )      (     )        (     ) 
 
such that the symmetry conditions are met. The symmetry conditions lead to a system 

of linear partial differential equations for the independent and dependent variables which eventually split into many more 

equations since they (independent and dependent variables) are independent of the derivatives of the dependent variable. 

However, the coefficients of these variables do depend on these derivatives.  

The basis operators of the Lie algebra under this sub-case when       and        ⁄  are given as  

 

                                      
 

  
                                                                                         (12a) 

                                        
 

  
                                                                                    (12b) 

                                 
 
 

 
  0√ 

 

  
 

 

   √ 
(      (   )) 

 

  
1                                                      (12c,d) 

      
   0 

 

  
 

 

 

 

  
 

 

    
(     )(   ) 

 

  
1                                                  (12e,f) 

and 

                                 (   )
 

  
                                                                                                                    (12g) 
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where   √                and  (   ) is any solution of (11). The basis symmetries in (12) may be represented 

for convenience as  

 

   
 

  
                                                                                                      (13a) 

    
 

  
                                                                                       (13b) 

 

    
 

 
  0√ 

 

  
 .

 

 √ 
  √ / 

 

  
1                                      (13c) 

    
 
 

 
  0√ 

 

  
 .

 

 √ 
  √ /  

 

  
1                                     (13d) 

    
  0 

 

  
 

 

 

 

  
 (    ) 

 

  
1                                      (13e) 

    
   0 

 

  
 

 

 

 

  
 (    ) 

 

  
1                                    (13f) 

and 

    (   )
 

  
                                                                              (13g) 

  
 

   
(   )   

 

   
(   )   

 

  
(   )         

 

  
(   )  

The nongeneric Lie point symmetries          comprise of groups: the first group of symmetries                 constitute 

the Lie algebra   (   ) and the second group              correspond to the solution symmetries of the one–dimensional free 

particle. The former is characteristic of an equation arising from finance. It is important to note that the Lie algebra of 

infinitesimal symmetries for (13) spanned by the vectors     (translation in t),      
(dilatation in u),             (Galilean 

boost),             (local symmetries), and     
is an additional infinite–dimensional subalgebra in which f(x, t) is the solution 

of (11) and reflects its linearity. The associated Lie algebra of the above six–parameter Lie group of infinitesimal operators is 
*  (   )    +     , where W3 is the three-dimensional Heisenberg-Weyl algebra implied by the commutation relations 

given in Table 1, leaving out the solution symmetry. Note that the symbol   is used when all elements of the first subalgebra 

have zero lie brackets with all elements of the second. This Lie algebra, when certain special subcases are considered is 

equivalent to that of the heat equation given in [11] as    (   )      
 

Table 1: Lie Bracket for Lie point symmetries (13)–(13f) 

,   -                     

   0 0 
 

 
    

 

 
            

   0 0 0 0 0 0 

    
 

 
   0 0  

  

  
   0     

   
 

 
   0 

  

  
   0     0 

        0 0    0 
  

 
   

   

 
   

       0    0  
  

 
   

   

 
   0 

 

4.0 Construction of the transformation of (11) into the heat equation 

It has been proved in [12, 13, 14] that the heat equation is the only polynomial partial differential equation of the second 

order in two independent variables invariant under the finite group of the heat equate itself. Bluman and Kumei [15] provide 

the framework for the existence and construction of a transformation between two (linear or nonlinear) partial differential 

equations.  
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Theorem 1 [15] In the case of one dependent variable, u, a mapping mdefines an invertible mapping from  

(     ( )    ( ))-space to (     ( )    ( ))-space for any fixed p if and only if m is a one-to-one contact 

transformation of the form 

   (     ( ))       (14) 

   (     ( )) 
      

(15) 

          ( )   ( )(     ( ))                    (16) 

Note that, if  
 
and   are independent of   ( )  then (14)–(16) defines a point transformation. 

We apply this theorem in the construction of invertible point mapping by finding the point transformation which relates our 

given equation to the heat equation. Since the generators             of (13) commute, we use them for the construction of a 

transformation that will map (11) invertibly into the heat equation.  

Let       and      . From the vectors of the infinitesimal symmetries of (11),  

       (   )
 

  
    (   )

 

  
   (   ) 

 

  
                                        (17) 

      (   )
 

  
    (   )

 

  
   (   ) 

 

  
                                        (18) 

where         √  
 

 
  

                           .
 

 √ 
  √ /  

 

 
  

                

                      
                 

 

 
            (    ) 

           

To verify that the Jacobian of the transformation is nonzero, we find the determinant of  

    |
        
       

|  
√ 

 
  

 

 
               

Since     then the existence of an invertible mapping of the form  

   (   )             (   )               (   )u           (19) 

is a guarantee for mapping (11) into a constant partial differential equation. The mapping (19) must satisfy the following 

necessary conditions 

                                                                                                                            (  )       
                                                                                (21) 

                                     .                       (22) 

Substituting the values of the      
 
in (20)–(22) and solving the resulting simultaneous systems yields            

√  
 
 

 
                 

        
 

 
        

}
   

 

√ 
 
 

 
          

     √  
 

 
  

                                    (23) 

√  
 
 

 
                 

        
 

 
        

}
               

        
                                          (24) 

√  
 
 

 
        .

 

 √ 
  √ /  

 
 

 
   

        
 

 
       (    ) 

   
}
    

 

 
(     ) 

   
 

 
(      ) 

                              (25) 

From (23), 

 (   )  ∫      √  
 
 
    ( ) 

    ( )                    (   )    
 √ 

 
(    ) 

 
 
    

From (24),  

 (   )  ∫      ( ) 
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 (   )      ̇( )           ,    ( )        

Therefore   (   )       . 

From (25), 

 (   )  ∫         
 

 
      ( ) 

 

  
 (   )        ̇( )  

 

 
(      )   and  

  ( )  
 

 
(      )       

therefore,   (   )      2
 

 
(      )      

 

 
   3 

where            are arbitrary constants. Without loss in generality, we may let        and      to have (26) – 

(28).  

   
 

 
√ (    ) 

 
 

 
           (26)  

          and       (27) 

 (   )   (   )   2
 

 
(      )      

 

 
   3      (28) 

 We now map (11) invertibly to the heat equation by using transformations (26)–(28). 

Using calculus and especially the principle of chain rule,  

  

  
 {

 
 
 
 

 
(    ) 

 

 
    

  
     

  

  
 
 

 
√ (      ) }                        (29) 

  

  
 {

 
 
 
 

 
(    ) 

 

 
    

  
 
 
 
 
 

 
(          ) }      (30) 

and 

   

   
 {

   

  
(    )   

   

   
 
 
 
 
 

  
(    ) 

 

 
    

  

 
 

 
.(          )         / (          ) 

}   (31) 

where    
 

 
(      )       

Substituting (29) – (31) into (11) we obtain the linear heat equation 

  

  
  

   

   
   

                           (32) 

where  

  
   

   
(    )  

5.0    Conclusion 

We have been able to connect the partial differential equation associated with the pricing of electricity futures contract 

with the well-known and widely studied heat equation and therefore one can use the results for the later to obtain solutions of 

the former. Practitioners in the financial institutions can also have direct method to obtain solutions important to their needs.  
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