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                       Abstract 
 
We describe the process of flowing 2 closed surfaces by the Ricci flow and make 

some remarks when the Euler characteristic ( )2Mχ  of the surface is positive. 

Indeed, either the round 2-sphere, S2 or its  Z2 quotient, RP2 is the only gradient 
shrinking Ricci Soliton. As a by product, we obtain differential Harnack estimates on 
positive solutions of conjugate heat equation defined on a surface with nonnegative 
scalar curvature. 
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1.0    Introduction 

The goal of this article is to describe how closed surfaces can be deformed using a geometric nonlinear heat-flow, called 
the Ricci flow. By a closed surface we mean a compact 2-manifold without boundary; if it is simply connected, then it is 
topologically equivalent to 2-sphere. On the other hand, the Ricci flow is a process of deforming metric tensor on a general 

−n manifold ( ),2≥n  [1 - 3]. The Ricci flow was first understood in dimensions higher than 2, as it provides a complete 

classification of three manifolds, that is, the Thurston Geometrization conjecture which has Poincaré conjecture as a special 
case. See for instance [4], and [5]. The Ricci flow in 2-dimension is conformal and if the total surface area should be 
preserved during the evolution, Ricci flow will definitely converge to a constant Gaussian curvature metric everywhere in the 
conformal class, that is, the limiting metric is conformal to the background metric and of course to metric )(tg  at any time t
. This provides a proof of Uniformization Theorem of Poincaré and Koebe [6, 7, 8]. However, it is much more difficult to 
establish the convergence of the Ricci flow when the Euler characteristic of the surface is positive. 

The outlines of this note follow; in section 2, we introduce the Ricci flow as an initial value problem for nonlinear heat 

equation and show how 2M  is being deformed under the normalized version of the flow. In section 3, we discuss the Ricci 
flow approach to the uniformization of surfaces. In section 4, we make some remarks on the existence and uniqueness of 
Ricci soliton with examples when the Euler characteristic is positive. In section 5, we discuss monotonicity of Hamilton’s 
surface entropy and consequently show that the metric of round 2-sphere is a gradient shrinking soliton and lastly in section 
6, we further obtain some results as by-products of Theorem (5.3) in relation to differential Harnack’s estimates on positive 
solutions of conjugate heat equation on the surfaces. For the purpose of this section we refer to the standard references [9-11] 
and some related works [12 - 15] on Kahler-Ricci flow, Gaussian curvature flow and mean curvature flow. 
 
2.0 The Ricci Flow 
Let us consider an initial value problem for nonlinear heat equation (2.1) introduced in [1], defined on an n -dimensional 

manifold 2, ≥nM , together with a one-parameter family of Riemannian metric ( )∞∞−∈ ,),( ttg    
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where ijR  is the Ricci curvature tensor. The equation evolves and smoothens out the metric of the manifold with respect to 

time. In particular, it deforms the metric by the negative of its curvature to give a better form of the metric. We therefore refer 

to (2.1) as the Ricci flow equation and ( )( )tgM ,  its solution. 

Suppose a one-parameter family of metric 0)()( gttg λ=  is a solution of the Ricci flow equation under Einstein metric 

,0kgRij =  where ℜ∈k , we have 

00 2)( kggt
t

g −=′=
∂
∂ λ        (2.2) 

Solving the resulting ODE, ,1)0(,2)( =−=′ λλ kt  we obtain ( ) 021)( gkttg −=  as a solution which exists only for the 

short time [ )kt 2
1,0∈  with a singularity at .2

1 kt = If we consider for instance a unit round sphere  with the standard 

metric g , then ( )( )gntg 121)( −−=  is a solution to the Ricci flow, implying that the sphere shrinks homothetically 

under the Ricci flow and eventually collapses to a point in a finite time ( )12
1
−= nT . Similarly, in the case of hyperbolic 

manifold with metric 0g where ( ) ( ) ,1 00 gngRc −−=  the evolution ( )( ) 0121)( gtntg −+=  will expand the manifold 

for all time and goes back to time ( )12
1
−−= nT upon which the metric explodes out of a single point. While the Ricci flat 

manifold is steady under the Ricci flow. 
 
The Ricci flow equation (2.1) does not actually preserve the volume whereas in application, we usually prefer the volume to 
remain fixed to avoid the problem of manifold shrinking or expanding at time t  goes to singular time. We however have 
normalized Ricci flow (2.3) which helps to achieve this 

ijijij g
n

r
Rg

t

2
2 +−=

∂
∂        (2.3) 

Here ( ) ∫−= µRdVolr nMg
1

 is a constant, the average of the scalar curvature R of nM , and µdVol nMg ∫= . The 

factor r  appearing in (2.3) keeps the volume of the manifold constant. 

On surfaces ,2M the normalized Ricci flow becomes 

( )gRrg
t

−=
∂
∂        (2.4) 

where RdAAr
M∫

−= 2
1 , the average of the scalar curvatureR of 2M , A  is the total surface area, dA  is the area 

element of metric g on 2M  and 

( ) 02 =−=
∂
∂

∫ dARrA
t M

      (2.5) 

Thus, the total surface area is preserved along the flow. The integral of R over the surface 2M  gives the Euler class 

( )2Mχ . Recall the Gauss-Bonnet formula (2.6) on closed surface ( )2M   

( ) ( )( )22 12
2
1

2 MMKdA
M

γχ
π

−==∫      (2.6) 

where ( )2Mχ  is the Euler characteristic, ( )2Mγ , the genus and K  the Gaussian curvature of 2M . Here ,2 RK = then 

( )242 MRdA
M

πχ=∫        (2.7) 

In fact, Gauss Bonnet formula accounts for the relation between the topology and geometry of the underlying manifold as we 
can see that the sign of r  can be determined explicitly even independent of g , 

( ) RdAMr
M∫== 2

4
12

π
χ       (2.8) 

For example, if we consider a topological 2-sphere whose genus is 0 , then ( ) 22 =Mχ  and πµ 82 =∫ Rd
S

. 

3.0 Uniformization of Surface 
Uniformization theorem implies that every smooth surface admits a unique conformal metric, which classifies surface into 
three families using the sign of the curvature. This is a classical result in Riemannian geometry, that is, every simply  
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connected surface is conformally equivalent to one of the Riemann sphere, the complex plane and the open disk. In this 
direction, Ricci flow helps greatly in the classification of closed two-dimensional manifolds into three families of constant 
positive, zero or negative curvature, as it is also used in the classification of closed three manifold (Geometrization 
Conjecture) which consequently leads to the proof of Poincaré conjecture. The procedure is to run Ricci flow on smooth 
surface and allow the metric to be deformed over time such that the scalar curvature evolves as reaction-diffusion equation 
and eventually becomes constant. The limiting metric is the uniformizing metric which classifies the universal covering space 
of the surface into one of the three canonical geometries. We now state an important result of Ricci flow on surfaces due to  
Hamilton [6]. 
 

Theorem 3.1. Let ( )0
2, gM  be a closed surface, there exists a unique solution )(tg  of (2.4) for all time t . Moreover, at 

∞→t , the metric )(tg  converges to a metric ∞g of constant curvature when 0≤r . If ( ) 00 >gR , then the metric )(tg
converges to a positive constant curvature metric at time ∞→t . 
 
The above result together with the work of Chow [7] give a complete proof of the uniformization of surfaces using the Ricci 
flow. The main point of contention here lies in the class of positive Euler characteristics where the existence of gradient 
shrinking soliton (see next section) uses Kazdan-Warner identity which itself assumes the Uniformization theorem. (A new 
proof of Uniformization theorem without Kazdan-Warner identity is in [8]). We remark that Kazdan-Warner identities have 
played significant roles in understanding blow up behaviour of solution to geometric PDEs that prescribed the curvatures in a 
conformal class. They were originally introduced by Kazdan and Warner [16] in their study of prescribing Gauss curvature 
for n -sphere as follows: 

)( ) ,0, =∇∇∫ gjS
dVxKxn  for 1,...,1 += nj   (3.1) 

where jx  are the coordinate function of ( )xKRS nn ,1+→  is the prescribed function to the scalar curvature of conformal 

metric g . This identity has been extended to compact manifolds involving Killing vector field X  by Bourguion and  Ezin 

[17] 
) 0, =∇∫ ggS

dVRXn
       (3.2) 

 
4.0 Existence of Unique Surface Solitons 
The Ricci solitons are special self-similar solutions of the Ricci flow and they may be regarded as fixed points of the 
normalized Ricci flow. They provide motivation to consider certain quantities that may guide us in developing estimates for 
general solutions. The readers can see for instance [18], [2] and [3] for more information. We call a solution )(tg  of the 

normalized Ricci flow on a surface 2M a Ricci soliton, if the metric )(tg  changes by the pull back diffeomorphism for any 

times 1t and 2t  in the interval of  existence and any time-dependent scale factor ( )tσ    

( ) ( ) ( ) ( )12 tgtttg ∗= ϕσ       (4.1) 

Starting at time 0=t , we have for any time t  

( ) ( ) 0)( gtttg ∗= ϕσ        (4.2) 

This simply means that in a Ricci soliton, all the Riemannian manifolds ( )gM n ,  are isometric up to a scale factor that is 

allowed to vary with time. Combining (4.2) with scale and diffeomorphism invariance of the flow, we have 

gL
t

g
X=

∂
∂

        (4.3) 

where X  is the one parameter family of vector field generated by ( )tϕ . We then have formally the Ricci Soliton equation 

  00)(2 ggLgRc X σ++        (4.4) 

and we have 
Definition 4.1. Suppose ,fX ∇= a gradient of some smooth function ),,( txf  we say )(tg is a gradient Ricci soliton and 

satisfies 

( ) 00 2
gfgRc

σ+∇∇+        (4.5) 

We say that 0g  is shrinking , steady or expanding on depending whether 0,0 =< σσ  
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or 0>σ  

Theorem 4.2. ([3] Theorem 4.1). If 0g  is a complete gradient Ricci soliton, then there exists a solution )(tg  of the Ricci 

flow with 0)0( gg = , one parameter family of diffeomorphisms )(tϕ  generated by 00)(
1 fgradX gtτ=  with 

MdI=)0(ϕ , function ( ) 00)( ffwithtf =  defined for all time t  with  

( ) 01: >+∈= ttτ  

such that 

( ) ( ) 0)( gtttg ∗= ϕτ  

( ) ( ) ( )tffttf ϕϕ o00 == ∗
 

then also 

( )( ) ( ) ( ) ( ) 0
2

=∈+∇∇+ tgftgRc tgtg

τ
    (4.6) 

and 
( )

( ) ( )
( )

2

tgtg tfgrad
t

tf =
∂

∂      (4.7) 

Therefore 

Definition 4.3. A solution ( )( ) ( ]0,,, ∞−∈ttgM n  is said to be a shrinking gradient Ricci soliton if 

0
2
1 =−∇∇+ ijjiij gfR
τ

     (4.8) 

Note that equation (2.1) is equivalent to 

( ) ijijfg
ij g

t
L

t

g 1−=
∂

∂
∇

 

Thus by equation (4.6) with ( ) )1()(,)1( −−==− ∗ gtttggg ϕ  and ( )tftf ϕo)1()( −= , )(tg  is a gradient shrinking 

soliton which shrinks homothethically up to isometry. Einstein metric of positive scalar curvature provides a very good 
example. In fact, we know [18], that any gradient shrinking Ricci soliton in dimensions 2 and 3 are Einstein solutions with 

positive scalar curvature. Gaussian metric ( )0
2 , gR  is a gradient shrinking soliton with potential 

02
1

4

2

gfandf x =∇∇= . Round cylinder kkn RS ×−  or its quotient provides another class of example of gradient 

shrinking solitons. 
Let’s briefly consider some consequences of gradient Ricci soliton equation. Taking the trace of equation (4.6), we have 

0
2

=∈+∆+ n
fR        (4.9) 

adding this with equation (4.7) implies 

2
2 ∈−∇+−∆−=

∂
∂ n

fRf
t

f       (4.10) 

Taking the divergence of (4.6), using contracted second Bianchi identity (7.3) and the Ricci identity (7.4), we have 

fRR

fRfRgfRg

kiki

kjijkiiijjiijk
jk

∇+∇−=

∇−∆∇+∇=






 ∈+∇∇+∇=

2

1

2

1

2
0

   (4.11) 

which implies that 

ConstffR ≡∈=∇+ 2       (4.12) 

constant in the space variables. This can be seen by substituting (4.6) into (4.11), that is, 

( ) 0
2 =∈+∇+∇ ffRi  

consequently by (4.9) we have 

.2
2

ConstfffR ≡∈−∇−∆+  
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Now, on the surface 2M  a gradient Ricci soliton is equivalent to 

( ) ( ) ijijX gRrgL −=        (4.13) 

Which implies 
Rrf −=∆         (4.14) 

Hence the smooth function f  is called the potential of the curvature. On a compact surface, the potential is unique up to 

addition of constant of time alone. For example when 2M  is diffeomorphic to 2S , the conformal group of 2S gives the 

gradient soliton on 2S . 
Note that the Kazdan-Warner Identity itself assumes Uniformization theorem. The proof of the above theorem without 

Kazdan-Warner identity is presented in [2, 8]. We remark that conformal killing vector field is conformally invariant, then in 

each conformal class, there exists a metric of constant curvature on 2M . Recall that ( )Mr χ≡  by the Gauss-Bonnet 

formula. It turns out that whenever ,0≤r  there are no conformal killing vector fields, though all the Ricci solitons have 

constant curvatures. We remark also that Kazdan-Warner Identities have been extended to higher dimension [17]. This also 

implies no conformal Killing vector fields for nonpositive Ricci curvature for 0≥n   [2]. Indeed, either 2S with usual round 

metric or its 2Z  quotient 2RP is the only shrinking gradient Ricci soliton in dimension 2. Here we know that ( ) 02 >Mχ  

and we can assume that 2M  is diffeomorphic to 2S by passing to the universal cover. We employ Kazdan-Warner Identity 
(see appendix or [16] for details) to establish this. 

 

Proposition 4.4. ([2], [3]) Let ( )( )tgM ,2  be a shrinking gradient soliton on a closed surface, then )(tg is a metric of 

constant positive curvature. 
Proof. By a gradient Ricci soliton equation (4.13), we have 

( )RrXdiv −= 22  

Since X  is a conformal Killing vector field, we obtain 

( ) ( ) dAdivXRdArRdARrR
MMM ∫∫∫ −=−=− 222

2
 

Integrating by parts and using the Kazdan-Warner identity (7.6), we obtain 

( ) 02
2 =−∫ dArR

M
 

Denote the trace free part of the Hessian of the potential function f  of the curvature by 

ijjiij fgfM ∆−∇∇=
2

1       (4.15) 

It turns out that any metric ijg with 0=ijM  is a Ricci soliton. It is now clear that on closed surface of positive curvature, 

there are no other soliton than the one with constant curvature. 
However, there do exist soliton metrics with positive scalar curvature on noncompact surface. For example, the Hamilton 
cigar soliton where 

22

22
2

1 yx

dydx
ds

++
+=  

 and with potential function ( )221log yxf ++−=  has positive Gauss curvature which flows by conformal dilation and 

is asymptotic to a flat cylinder of finite circumference at infinity. 
 
5.0 Monotonicity of Hamilton’s Entropy and its Consequences 
Suppose we have a solution of the normalized Ricci flow on a closed surface 2M  with 0>R  for all 0>t , we can denote 
a quantity 

rRLL
t

L
Q −+∆=∇−

∂
∂= 2       (5.1) 

where RL log=  
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Then 

( )rR
R

R

R

R
Q −+

∇
−∆=

2

2

  

In [6] Hamilton defines a quantity 

QRdArZ
M∫

−= 2
1  

by definition of Q  

)(
2

1
2 rRR

R

R
rZ

M
−+

∇
= ∫

−  

( ) ( ) ( )

( ) ( ) dARrrRR
R

R

dARRrRR
R

RRrRR
r

dt

dZ

M

tt
t

M

−−+
∇

+














+−+

∇−+∇∇
−=

∫

∫
−

2

2

1

2

2

,2

 

Using ( )rRRRRt −+∆= , we have 

rZZ
t

Z +≥
∂
∂ 2         (5.2) 

Suppose Z is positive at a particular time 0t , then it would blow up in a finite time. This contradicts the fact that solution 

exists for all time, then we have that 0≥Z . However, we have the following Hamilton entropy 

( ) µdRRgH
M

log: 2∫=       (5.3) 

defined for a metric of strictly positive curvature on a compact surface. We hereby follow the argument in [6] that this 
entropy is decreasing under the normalized Ricci flow. Chow [7] has modified this quantity to extend to the case where the 

curvature of 0g changes sign. 

Now computing the time derivative of (5.3), it then follows by direct calculation 
( ) ( )

( )[ ] ( )

( )[ ] ( )[ ] ( )
( )[ ]

( ) dA
R

R
dArRR

dARRdArRRR

dARrRRdArRRRdARrRRR

dARrRRdAR
t

dARrRRR

dA
t

RRdAR
t

RdARR
t

dARR
tdt

gdH

MM

MM

MMM

MMM

MMM

M

2

22

22

222

222

222

2

log

loglog

loglog

logloglog

log

∇
−−=

∆+−+∆=

−−−+∆+−+∆=

−+
∂
∂+−+∆=

∂
∂+









∂
∂+









∂
∂=

∂
∂=

∫∫

∫∫

∫∫∫

∫∫∫

∫∫∫

∫

 

The last inequality was obtained by integration by parts methods 

Proposition 5.1. If ( )( )tgM ,2  is a normalized Ricci flow on compact surface such that ( ) 00 >gR , the Hamilton entropy 

satisfies 

( )
dAMdA

R

fRR

dt

gdH
MM

2
2

22 2 ∫∫ −
∇+∇

−=     (5.4) 

where M  is the trace-free part of the Hessian of potential function f . Moreover, the entropy is strictly decreasing unless 

)(tg is a gradient Ricci soliton. 

 

Proof. Recall that rRfandgffM −=∆∆−∇∇= 2
1
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( ) dAffdAM
MM 







 ∆−∇∇= ∫∫
222

2

1
22

 

and 

( )( )dAffdAM
MM

222
22 22 ∇∇−∆=− ∫∫    (5.5) 

Using integration by parts and the Ricci identity 

( ) ( )
( )

( )( ) dAffRicff

dAfRicff

dAfffdArR

M

M

MMM

∇∇−∆∇∇−=

∇−∆∇∇−=

∆∇∇−=∆=−

∫

∫

∫∫∫

,,

,

,

2

2

222

22

 

( )

dAfRf

dAffRff

M

M








 ∇+∇∇−=








 ∇∇+∇∇∇∇−=

∫

∫

22

2

1

,
2

1
,

2

2
 

Putting this back into (5.5), we have 

( )( ) dArRfR

dAffRdAM

M

MM

22

222

2

22

2

1
2

−−∇=








 ∇∇−∇=−

∫

∫∫     (5.6) 

( since ( ) 2

2
122

fRrRf ∇−−=∇∇ ). Expanding and integrating by parts we have 

dAfRfR
R

R
dA

R

fRR
MM 













∇+∇∇+

∇
−=

∇+∇
− ∫∫

2
22

222

 

dAfRfR
R

R
M 













∇+∆+

∇
−= ∫

2
2

22
     (5.7) 

( ) dAfRrRR
R

R
M 













∇+−+

∇
−= ∫

2
2

22
 

Adding (5.6) and (5.7), we obtain 

( ) dA
R

R
rRdA

R

fRR
dAM

MMM 











 ∇
−−=

∇+∇
−− ∫∫∫

2

2

2
2

2222   (5.8) 

as the desired result. We also note that equality in (5.8) holds  if 0≡M , thus the flow is a gradient Ricci Soliton. Note that 

if equality is attained in (5.4), then 0≡M  which implies that the solution is a gradient Ricci soliton and rR ≡  is constant. 
 
Corollary 5.2. With the conditions of Proposition (5.1), the Hamilton entropy is a strictly decreasing function of time unless 

( ) rR ≡⋅ 0, , in which case, it is constant in time. 

 
Proof. If 

0=
dt

dH  

at some time [ )∞∈ ,00t , which implies that 

( ) 0, 0 ≡⋅ tM  

then ( )0tg  is a gradient Ricci soliton. Hence ( ) rtR ≡⋅ 0,  is constant and thus ( ) ( )0tgtg ≡ . In general, we have a 

uniform constant 0>C  such that the Hamilton entropy 

CdARR
M

≤∫ log2        (5.9) 
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Finally, we have 
 

Theorem 5.3. With the conditions of Proposition (5.1), the Hamilton entropy is a strictly decreasing unless the solution ( )tg  

is a gradient shrinking soliton. 
 
Proof. From equation (4.15) 

ijijjiijjiij gRffgfM
τ2

1

2

1 −+∇∇=∆−∇∇=  

where we have used .1
τ=−=∆ randRrf Also by equation (4.11) 

,
2

1
0

2







 −∇∇+=∇+∇≡ gfRcdivfRR
τ

 

we can then write (5.4) as 

( )
R

gfRcdiv
gRf

dt

dH
MijijjiM

2

2
12

22

2

1
2 τ

τ
−∇∇+

−−+∇∇−= ∫∫  (5.10) 

 
6.0 LYH Differential Harnack Inequalities on Surfaces 

In this section, we make brief remarks on Harnack inequality of Li-Yau-Hamilton type as a by-product of the last 
section. We restrict the discussion to a surface of positive scalar curvature, though, the result works in general for the case of 
nonnegative scalar curvature. Note that differential Harnack inequalities for evolution equations began with a celebrated 
paper of  Li and  Yau [11] for heat operator on Riemannian manifolds.  Their approach is based on the Maximum principle, 
and since this works, it has been proven for many geometric evolution partial differential equations using similar approach. 
Most notable works in the direction of this present note are Hamilton’s [9], Chow and Hamilton’s [14] and Perelman’s [10] 
for conjugate heat equation. Cao [12], Chow [13], and Hamilton [15] have also extended Li-Yau-Harnack inequalities to the 
cases of Kahler-Ricci flow, Gaussian curvature flow and mean curvature flow respectively. 

In the present, we follow Perelman’s idea of coupled Ricci flow-conjugate heat equations  





−=∂
+∆−=∂

ijijt

t

Rg

Ruuu

2
        (6.1) 

where ( ) ( ) 0,,0, >×∈= TMTxtuu . His monotonicity formula implies,  pointwise gradient estimates for the 

fundamental solution of the conjugate heat equation and f is a function such that ( ) tTwitheu fn

−== −− τπτ 24  

backward time, namely 

( )[ ] 02
2 ≤−++∇−∆= unfRffP τ  

Satisfies 

( ) 0
2

1
2

2

≤−+∇∇−=−∆+∂ ijijjit gRfPR
τ

τ  

Let )(tg  be a solution to the Ricci flow on surface 2M  with the scalar curvature 0>R  

ijijt Rgg −=∂         (6.2) 

The scalar curvature then evolves by 
2RRRt +∆=∂        (6.3) 

Hamilton [9] proves that if the initial metric has positive scalar curvature, then 

0
112 >++∆=+∇−∂
t

RRIn
t

RInRInt
 

As a by-product of the monotonicity discussed in the last section, we obtain the following 
 

Theorem 6.1. Let ( )( )tgM ,  be a solution to the Ricci flow (6.2) on a surface with positive scalar curvature 0>R , let U 

be a positive solution to the conjugate heat equation 

0=+∆−∂ Ruuut   

such that ,,ln tTuf −=−= τ  then f  satisfies 
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Rffft −∇+∆−=∂ 2
 

 
and 

tT
R

u

u

u

u
t

−
≤−−

∇ 12
2

2

 

 
Proof. We give the sketch of the proof 

By standard smoothness argument uInf −=  implies Rffft −∇+∆−=∂ 2
. By Theorem (5.3), if H  is 

nonincreasing, then ( ) 0
2

2
1 ≥−+∇∇ − ijtTijji gRf , which may imply ( ) 02

1 ≤−+∇∇ − ijtTijji gRf  or 

( ) 02
1 ≥−+∇∇ − ijtTijji gRf , but we know that the later holds by the Pereman’s entropyW − monotonicity and it is 

strictly positive in all dimensions, except when )(tg  is a shrinking gradient soliton. Notice also that by Cauchy-Schwarz 

inequality 
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Since ng ijij =∑ 2
 

Here 2=n , using the nonnegativity of Einstein tensor (See Appendix A.2 for detail), we have 

( )tT
Rf

−
≤+∆ 1    (6.4) 

We recall on the other hand that ( ) 0
2

2 =∇−∆ −
∫

f

M
eff  , since 2M  is closed,  which implies  

0
2 =∇−∆ ff     (6.5) 

Adding (6.4) and (6.5) gives 
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Direct computations gives 
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And the estimate follows immediately 
Corollary 6.2. With the same conditions as in the above Theorem 6.1, we have for any two points 

( ) ( ) ( ) 2
2211 ,0,, MTinxtandxt ×  such that 21 tt < , that 
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t
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xtuxtu  

Here is the time derivative, ( ) [ ] 21,0:2,1, MsanditT ii →=−= γτ is a smooth curve joining the points 

( ) ( )2211 ,, xtandxt . 

 

Proof. Let [ ]1,0:, 2
21 γandMxx ∈  be a smooth curve joining 21 xandx . Suppose we define 

( ) ( ) ( )( )sTsInsL τγ −= ,  such that ( ) ( ) Tsss ≤<≤+−= 1221 0,1 τττττ  and 

( ) ( ) ( ) ( )2211 ,ln1,0 ττ xuLandxuInL ==  Then 
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By the last Theorem 6.1, we have that 

tT
R

u

u

u

u
r

−
≤−−

∇ 1
2

2

2

 

with 0≥R . Then 

( ) ( )
( )

( )









−
+−+

−
≤

∂
∂

tT
R

s

s

sL 1

2

2
21

21

2
ττ

ττ
γ&   

By the fundamental theorem of calculus 
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Hence, for any two points ( ) ( )2211 ,, txandtx  in the space-time, we have by exponentiation of the last inequality that 
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7.0 Appendix 
A.1. Laplace-Beltrami Operator 
Let ( )gM ,  be an n -dimensional manifold equipped with Riemannian metric g .  let f be a smooth function on ,M  then 

the laplacian acting on f , called Laplace Beltrami operator is defined as divergence of the gradient of f , i.e. 

fgraddiv=∆  

Suppose ( )gM ,  is an oriented smooth manifold with the volume i
gg dxgVol == µ . The divergence of a vector 

field X  on the manifold is the scalar function 

( ) gXg LXdiv µµ =  

where ( )XL  is the Lie derivative along the vector field X . Then  

( )i
i Xg

g
Xdiv ∂= 1  

while the gradient of f  is defined as  

( ) fgffgrad i
ijii ∂=∂=  

Therefore ( )fgg
g

fgraddivf j
ij

i ∂∂==∆ 1  (7.1) 

A.2 Einstein Metric 
A Riemannian metric is said to be Einstein if its Ricci tensor is a scalar multiple of the metric at each point, that is, for some 
constant λ   

( ) everywhereggR ijij λ=  

So Einstein condition is simply written as 
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( ) ijij Rg
n

gR
1=        (7.2) 

Recall that the Einstein tensor G  is a rank 2 tensor field 

( ) ijijij RggRG
2

1−=  

contracting with inverse metricijg , we have 

R
n

G
2

2
0

−=≡  

Thus, in dimension 2≠n , this implies that 0≡R  on M , which is Ricci flat manifold 
The Contracted Second Bianchi Identity is given as 

RRg kjki
ij ∇=∇

2

1        (7.3) 

which is equivalent to the Einstein tensor being divergence-free 

( ) 0
2

1 =






 − ijij RggRdiv  

Consider the commutators of ∇∆ and  on any function f , we have 

fRfff kijkljjijiji ∇−∇∇∇=∇∇∇=∇∆  

Which implies that 

fRff jijii ∇+∆∇=∇∆       (7.4) 

By Bochner identity, we identify 

( )ffffRff iijiij ∆∇∇+∇∇+∇∇=∇∆ 222
22    (7.5) 

 
A.3 Killing Vector Field 

Let ( ) MMt →:ϕ  be a one-parameter family of diffeomorphism generated by a vector field X . Define the pull back 

diffeomorphism MTMT pt
∗→*

)(
* : ϕϕ  on the tangent bundles as ( ) ( )( ) ,*

1* tt t
−= ϕϕ where ( ) MTMT PPt )(* : ϕϕ →  is 

the differential of ( )tϕ , acting on cotagent bundle by 

( ) ( ) MTMT pPtt
*

)(
1

* : ϕϕϕ →= −
 

We define the Lie derivative of the metric tensor ijg as 

( ) ( ) ijjiijXijt
t

XXgLg
t

∇+∇==
∂
∂

=

*

0

ϕ  

where ∇  denotes covariant differential operator 

We say that a vector field is a Killing Vector field if 0=gLX  and in local coordinate we write 

0=∇+∇ ijji XX  

So a vector field is said to be a conformal Killing vector field , if 

( ) ( ) ijijX gXdiv
n

gL
2=  

This implies that if { } 0≥ttϕ is a group of conformal diffeomorphism which generates vectors X , then 

( ) ( ) ijijt
t

gXdiv
n

g
t

2*

0

=
∂
∂

=

ϕ  

Theorem 7.1. If ( )gM n ,  is a closed Riemannian manifold with non positive Ricci curvature, then there are no nontrivial 

killing vector field. 
Proof. From  

( ) ( ) ijjiijXijt
t

XXgLg
t

∇+∇==
∂
∂

=

*

0

ϕ  

Since tϕ  is conformal we have 
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( ) ijijji gXdiv
n

XX
2=∇+∇  

Taking the divergence, we have 

( ) ijjkjkji gXdiv
n

XdivXRX
2=∇++∆  

0
2

1 =∇






 −++∆ Xdiv
n

XRX jkjkji
 

Hence 

( ) XXdiv
n

XXRcX

XXXX

,
2

1,

,
2

1

2

2

∇






 −−−∇=

∆+∇=∆  

Integrating by parts, we have 

( ( ) ) µdXdiv
n

XXRcXM

22 2
1,0 







 −+−∇= ∫  

Since each of the three terms on RHS are nonnegative and ,0<Ric  we conclude that 0≡X . 

Theorem 7.2. (Kazdan-Warner Identity [16, 17]) If X  is a conformal Killing vector field on 2S , then 

0, 22 ==∇ ∫∫ dAXdivRdAXR
MM

     (7.6) 

Here ( ) 02 >Mχ , so by passing to the universal cover we may assume that 2M  is diffeomorphism to 2S . 

 
8.0 Conclusion 

We have discussed how two dimensional compact Riemannian manifold can be deformed using conformal Ricci flow, a 
nonlinear geometric evolutionary Partial Differential Equation, the consequence of which is a complete proof of a classical 
theorem in Topology, the uniformization theorem of Poincaré and Koebe. We then focused attention on the surfaces of genus 

zero where we made some important remarks. It was established that either the round 2-sphere, 2S  or its 2Z  quotient, 
2RP  is the only gradient shrinking Ricci Soliton via Hamilton surface entropy monotonicity. As a by product, we derived 

Li-Yau-Hamilton type (LYH) differential Harnack estimates on positive solutions of conjugate heat equation defined on a 
surface with nonnegative scalar curvature. 
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