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Abstract

It is well known how to formulate and solve Einstés equation of motion in the
fields of bodies having cylindrical and sphericayrametries. But, the fact of nature is
that astronomical bodies such as the Earth and sare generally spheriodal in
geometry. Therefore in this paper we derive the&ein’'s equations for flat space-
time in oblate spheroidal coordinates to pave thaywfor the investigation of the
corresponding equations in the fields of bodies h&y spheroidal geometries.

1.0 Introduction
The oblate spheroidal coordinates of spag€, ¢) are defined in terms of the Cartesion coordinétgsz) by [1 - 3].

x=a(l— 12)"2(1+ &%) 2cos ¢ &)

y=a(l— n?)72(1+ &) sin¢g (2)

z =ané 3)
Wherea is a constant parameter and

—-1<1n<1,0<¢é<w; 0<¢p<2m (4)
Let X* be the Cartesian coordinates afftdbe the corresponding oblate spheriodal coordirztélat space-time given by

x% =ct

x! =x (5)

xt=y

x3=z

and

X0=ct=ct

Xt =nq

Xz=¢ (6)

X3=¢
Then the proper time intervat ¢ given in the Cartesian coordinates by

dt? = ¢?(dx®)? — (dx1)? — (dx?)? — (dx?)? @)
But by the invariance of proper time [3] it followrsat

dt? = dt? (8)

Wheref is the proper time interval in the Oblate spheab@bordinate. Also the metric tensor in the Gbl&pheroidal
coordinate. Also the metric tensor in the Oblgtieesoidal coordinatej,,,,, are defined [3] by the relation
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FupdX4dXV = dt? )

It therefore follows from (9), (8) and (7) that

FupdXHdX? = c?(dx®)? — (dx1)? — (dx?)?(dx3)? (10)
Consequently, substituting (1) — (3) into (10) virain the covariant metric tensor in Oblate Spexoddordinates as
Joo =1 (4 %) (11)
= _ _an +&
g1 = =17 (12)
- _az(n2+fz)
922 = ~ (13)
gs3 = a*(1—n*)(1+¢%) (14)
Juv = 0; otherwise (15)
Now by the reciprocal relation [3]
guvgv)l = 511/‘l (16)
Whereé, * is the Dirac tensor. We obtain the correspondomgravariant metric tensg’ as
g% =1 (17)
o __(=nf)
977 T @ (18)
—5 _ __(+8H)
97 = e (19)
g¥ = —a’1-n)(1+§?) (20)
g%’ = 0; otherwise (21)
Now the coefficients of affine connection in thel&b Spheroidal coordinaté'_ﬁ defined by [4]
= 1 _
Ly = 29 “ (gww+ 9y — guwl) 2J2
And are given by
£ 1= 1) (23)
1 ((1—2;12)(n2+52)
=1 _ n(1+n
22 — El_ fzz))((nz_l_zf)z) (24)
=1 n(1-1%)(1+
I3 e . (@3)
1—21112 = I—'211(= ()772_,_52) (26)
=2 f 1+T]2
1—122 - (1+(52)(7722)'|('52) 2) (27)
=2 _ —&(1-7n°)(1+&
= - (6% @9
R =T = TS (29)
1113;3 = 331 = (1_5772) (30)
1:23;3 = 332 = (1+$2) (31)
L5 =0; otherwise (32)

Now the Einstein equations of motion in the flahep-time Oblate Spheroidal coordinates are givel3b4].
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d?X* =g dXFdXY
CAI (33)
Hence from (33) and (23) — (32) we obtain the expliquations of motion as:
t=0
and (34)
n(1+8?) ., n(1-n?) s § . n(-n*)(+&%)
| T+ e~ Grevmre® T T aae 90 (35)
an
-- §10-n%) zp (487 5 n_ g §A-n?)(a+E?) so
St momaa® T wmas | T T ey 070 (36)
and
. E .. n ., _
Pt P s =0 S

These are the Einstein equations of motion insfietce-time in terms of the Oblate Spheroidal Coattéis, and referred to
as the azimuthal equation.

Azimuthal Solution.

It may be noted that the azimuthal equation (374 bewritten equivalently as

¢, & n o _
¢ + 1-¢3)  (1-7?2) (38)
or equivalently
Al + & A a —_n2)-e] =
= [ing] + = [ln(l + &2) /2] + = [ln(l n?) /2] =0 (39)
Consequently the integral is given by
Q=121+ ) 2 = | (40)
or equivalently
b= (1-n")"2(1+E2) 2l a1}

Wherel is a constant of the motion. This result is thaation for the conservation of angular momentuntte particles in
Oblate spheriodal coordinates.

2.0 Summary and Conclusions

In this paper we derived Einstein’s equations ofiomofor a particles of nonzero rest mass in flzice-time in Oblate
Spheroidal coordinates,€,¢) as (34) — (37). Then, we derived that exact@rdplete solution of the azimuthal equation as
(37).

In the first place it may be noted that correspogdiquation of motion for a particle of nonzera mass in Spherical
Polar coordinates ¢,¢$) are given by

#+10%2—rd?sin?0 =0 (42)
and

0 + 270 — r$?sinfcosd = 0 (43)
and

rdsind + 27 psing + 2ropcos = 0 (44)

Consequently, precisely as in the case of theseralh equations the door is henceforth openedhfiermathematical
integration of the Oblate Spheroidal equationgfoysical interpretation and experimental investarat

In the second place it may be noted that the swlutf the azimuthal equation (44) correspondingh® oblate
spheroidal solution (41) is given by

; l
b= =z (45)
Consequently the oblate spheroidal solution (41) ggeat generalization of all orders&gf Now with the derivation of
the Einstein’s general relativistic equations oftimo for a particle of nonzero rest mass in flahespidal space-time
coordinates in this paper, the way is open foritlvestigation of the corresponding equation in fietd around an oblate
spheroidal massive body.
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