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Abstract

We present a new Modified Variational Iteration Matd (MVIM) for the solution
of nonlinear Klein-Gordon equations. This method &n elegant combination of the
successive Taylor's approximation and the Variatan Iteration Method (VIM).
Numerical results show the complete reliability thfe proposed technique.
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1.0 Introduction

The Klein-Gordon equation is considered one ofrttest important mathematical models in quantum ftekbry. The
equation appears in relativistic physics and isdusedescribe dispersive wave phenomenon in geniéralso appears in
nonlinear optics and plasma physics. This equatppears in linear and nonlinear forms.

Several techniques including finite ffdirence, collocation, finite element, inverse sdatjerdecomposition and
variational iteration using Adomian’s polynomiakMe been used to handle different types of diffeaéequations[1-6].

The variational iteration method was proposed blyHe [7-8]. In this paper, we present a Modifiedd#&onal Iteration
Method proposed by Olayiwola [9-11] to the salntdf nonlinear Klein-Gordon equation of the form:

U (X, 1) — U (X,1) + au(x,t) + F(u(x,1)) = h(x,t) (1.0)
Subject to the initial condition
u(x,0) = f(x), u (x,0) = g(x) (1.1)

Where @ isa constant,h (X, t) is a source term anff (U(X,t)) is a nonlinear function OU(X,t) .
The equation has been extensively studied by winge numerical methods.

2.0 Modified Variational Iteration Method (MVIM)
To illustrate the basic concept of the MVIM, we sier the following general nonlinear partial diéfatial equation:

Lu (x,t)+ Ru (x,t)+ Nu (x,t) = g(x,t) 1.2)
where L is a linear time derivative operator, Raiséinear operator which has partial derivative widlspect to x, N is a
nonlinear operator and g is an inhomogeneous t&ceording to MVIM, we can construct a correct funagl as follows:

Ug (x,t)= u(x,0)+ g (x)ti (1.3)
U (G 8)=up (xt)+ i§4 [Lup+RUp+NUp-gldr (1.4)
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where g i (x) can be evaluated by substitutibly ( X,0) in (1.2) and at limitt = 0i<2.

Aisa Lagrange multiplier which can be identifigatimally via variational iteration method. The sabigt N denote the

nth approximationun is considered as a restricted variation t’ﬁn =0.

3.0 MVIM for the solution Nonlinear Klein-Gordon Equation
We present the analytical solution of the equatibtine form:

Ug (X, 1) = Uy (X, 1) +au(x,t) + F (u(x,t)) = h(x,t) (1.5)
u(x,0) = f(x), ut (x,0) = g(x) (1.6)
Applying MVIM in (1.5)
t

Un+1= Up +I (Un 7 (X,T) —Up o (X,7) +aupy (X,t) + F(uy(X,7)) — h(x,7))dr (1.7)

0
Making (1.7) stationary, this yields the followistationary condition
1-4] =0 (1.8)
A |T:t =0 (1.9)
A" =0 (2.0)
From (1.8-2.0), we have
Ait,r)y=(r-t) (2.1)

4.0 Numerical Examples
Numerical Example 1- Consider nonlinear Klein-Gordon equation

Ug (X, 1) — Uy (X,t) —u(X,t) + u(x,t)2 =xt + x2t2, u(x,0) =1, u; (x,0) = x.
Applying (1.3), (1.4), (1.7) we obtain
0 =0 (2.2)
t
U =Ug + I(A = T)(Ug,rr (XT) = Ug xx (X,T) = Ug (X,T) +U(X, 1)2 - xr - x°r?)dr 2.3)

0
up =1+ xt (2.4)
In the same manner
u, =1+xt (2.5)
up =1+ xt (2.6)
MVIM admits that
u=lim u
noa @2.7)
Which gives the exact solution
u =1+ xt (2.8)

Numerical Example 2-

ConsiderUy (X,t) = Uy (X,t) +U(X,t)% =1+ 2xt + X

Applying (1.3), (1.4), (1.7) we have
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0 =0 (2.9)
t

U =Ug + j (A = DUgzr (XT) = U (X, T) +Ug(x,7)? =1=2xT =X7°)dr | (3
0

up =1+ xt (3.1)
u, =1+xt (3.2)
Uy =1+xt (3.3)
AS n - o
u=lim u, (3.4)
n-a ’
Which gives the exact solution
u =1+ xt (3.5)

Numerical Example 3-

ConsiderUg (X, 1) = Uy (X, 1) + u(x,t)? = 6xt (x2 -t?) ,u(x,0) =1,u, (x,0)=0.
Applying (1.3), (1.4), (1.7), we obtain
3

g, =X (3.6)
U = Ug + j()l = D) Ugzr (X T) = Ug (X T) +Ug(x,7)? - 6x7( X% - 72))dr (3.7)
0
W = X3[3 (3.8)
uz = Xt (3.9)
ug = Xt (4.0)
U, = %33 (4.1)
Taking the limit
Therefore, (4.0) is the exact solution.
u= x> (4.3)

Numerical Example 4-

ConsiderUy (X,1) = Uy (X,1) + U(X,t) + u(x,1)? = x% cos?(t) , u(x.0) = x, u; (x,0) = 0.
Applying (1.3), (1.4), (1.7), we obtain

_ X
G = Y (4.4)
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t

Uy =Ug + ju = 1)(Ugrr (X,T) = Ug,x (X,T) +Ug (X,7) + Up(x,7)? = X*coS’(7) )dr
0

(4.5)

X X X
U =X - Etz + —t* - 2%+ .. =xcost) (4.6)

24 720
Hence, in a closed forrdl = XCOst) .

4.0 Conclusion

In this paper, the modified variational iteratioetimods has been successfully applied to variouasaf the nonlinear
Klein-Gordon equation. We showed that the resuitaioed converged to the exact solution after artevo iterations.

The method is applied in a direct way without usiigearization, transformation, perturbation, deezation or
restrictive assumptions. The use of Taylor's susiwesapproximation gives this method a clear achgmtover the other
methods because it reduces the more successivieajaui of integral operator.

It worth to note, that the method is elegant witihimal computational efforts. This method can b&eesed to the sine-
Gordon equations.
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