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Abstract

We consider the one dimensional equation that governs the motion of a conserved
scalar asit is advected by a known velocity field. We use the FTBS or forward in time
and backward in space scheme for the Advection equation. If expanding the numerical
scheme by Taylor series expansion and truncating it after the first two terms, we found
that, the discretized equation satisfied the partial differential equation. A further result
that admits the theorem of Lax, shows that the numerical properties of consistency,
stability and convergence are satisfied.
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1.0 Introduction

We focus on the Advection equation

au_ ou 1
ot~ “ox M

Here, u=u(x,t) and c=c(x,t) in which x is space dand time. The Advection equation is hyperboliatjzd differential
equation that governs the motion of a conserveldsaa it is advected by a known velocity field.[1]

For example the Advection equation can be consilegrehe form of a damped radio wave [2] or it denapplied to the
transport of dissolved salt in water.

Even in one space dimension and constant velobiysiystem remain difficult to solve. Since the atiem equation is
difficult to solve numerically, interest typicallgenters on discontinuous shock solutions, whichrext@riously hard for
numerical schemes to handle [3].

Using the FTBS or forward in time and backwardpace scheme, given as
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wherea is some constant [4], and also, from a Tayloreseeixpansion, it is shown that scheme (2) is dirder accurate in
space and time [5]. We have,
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t2
ul' + Atup + ——ug = u — aul' + aul — aAxuy + aAx®uy, (4)

2 j
t2
Atul + Tu?t = aAxul + aAx?ul, (5)
stup = st + S um, -2 6
ui = alxuy +«a > Ul Zu” (6)
Atul = alxul + 0(aAx? — At?) (7)

The truncation error on the right hand side ishef first order in both time and space as liititand Ax tends to zero. Thus
the forward in time and backward in space schentisfisg the Advection equation (1). We can alsoestigate the
behaviour of scheme (2) for the initial conditionthe form of a square wave given by

f(x) =0, x < 0.1
f(x) =1,0.1 < x < 0.2 (8)
f(x) =0, x > 0.2

and calculate also the numerical solution of theveation equation (1).
Using the forward in time and backward in spacees@hy the exact solution of equation {il)s one of pure translation [6],
that is,
a(x,t) =f(x-t) 9)
We now give a method which deal on the acguod@a numerical solution compared to that of tkaat solution of the
differential equation.

Equivalence theorem of Lax7]:

For a well posed linear initial value problem wahconsistent decretization, stability is the neamgssnd sufficient
condition for convergence of the numerical scheme.

We now discuss these properties of the numeritedrae one by one.

2.0  Properties of numerical Scheme
1.1  Consistency:
A formal way of demonstrating consistency of a nrioa scheme is to determine the function erromplkyforming a
Taylor series expansion and to show that it redtme®ro af\x andAt tend to zero. Using this method, it has been shown
that, the FTBS scheme for the one-dimensional veaumtion is consistent.

1.2 Analysis of stability
Consider the one-dimensional convection equatidmuifdl its discretization using the FTBS schemerglwe equation (2).
Let the analytical solution of the partial diffetiah equation (1) be denoted by M, the exact soiutdf the discretized
equation (2) be denoted by N, and the numericaltiool of the discretized equation (2) obtained wfithite machine
accuracy be denoted by S.
Then we can write

Discretization error =M-N (10)

Round-off error =S-N (12)

Since stability deals with accuracy with which t@mmputed solution S approaches the exact solutiarf the discretized
equation, we can define ernpas

n=N-S or S=Ng (12)

Using the superscript n for the finite step and subscript i for the spatial location so that f(xcan be written as
f(iAx, nAt) or asf, we can denote the erroriélt space location anef” time step as]".
Since the computed solution must satisfy the disaere equation (2), we have to machine accuracy,

(S-St _

(Sp+t - spa - SO

0 (13)
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SubstituteS* = N* —n7, in equation (13) we obtain

(Nin+1 +1) ) C(Nin ) —Hll) =0
Or
(NPEND) eVPoNEy | (P en]) cafonly (14)
At Ax At Ax

Thus, the error equation and the computed solutiothe discretized equation both posses the samme &md the same
growth property in time.
Thus for stability, we should have

n+1
0
n
;

1 (15)

1.3 Convergence
Since the numerical scheme is consistent and sthigle by theorem, the scheme converges.

3.0  Numerical experiment
Example 3.1
Solve the partial differential equation
U= Uy
u(0,t)=0
u(1,t)=2
u(x,0)=2x
at the point x=i: i=0,1,2,3,...,7.
and t=j/8: j=0,1,2,3,4.

Solution
c?=2, h=1, k=1/8
a=ck/n? ==L =1

x84
Then the equation is

Uij+1=1/4(U.1 j+Uisa )
Up1=0, U 0=2, Lho=4, o=6, U0=8, =10, 4o=12, y =14
Uijs1 =1/A(U1 j+Uis1)
j=0, Ul,1=1/4(Lbyo+Uzyo)= 1/4(0+4) =1.00
U1 =1/4(Qyo+U3yo) :1/4(2+6) =8/4 =2.00
Lb,l=1/4(Lb,O+u4,O) :1/4(4+8) =12/4 =3.00
W1= 1/4(L§'0+U5'0) =1/4(6+10) =16/4 =4.00
U1 = 1/4(U o+Us o) =1/4(8+12) =20/4 =5.00
U1 = 1/4(U o+Ur o) = 1/4(10+14) = 24/4 =6.00
U1 =1/4( o+ Us ) = 1/4(12+16) =28/4 =7.00
i=1, U =1/4(W r+Up 1) = 1/4(0+2)=2/4 = 0.50
W =1/4(U 1+Us 1) =1/4(1+3) =4/4 =1.00
U, =1/4(p 1+Us 1) =1/4(2+4) = 6/4 =1.50
0] =1/4(Lb,1+U5,1) = 1/4(3+5) =8/4 =2.00
W =1/4(t 1+Us 1) = 1/4(4+6) =10/4 =2.50
W =1/4( 1+Uy 1) = 1/4(5+7) =12/4 = 3.00
W2 =1/4(Us,1+U8,1) :1/4(6+0) =6/4 =1.50
22, U 5= 1/4(ts+Uy 5) = 1/4(0+1) = 1/4 =0.25
U5 =1/4(U 7+Us ) = 1/4(0.5+1.5) =2/4 =0.50
o= 1/4( 7+Us o) =1/4(1+2) =3/4 = 0.75
Us= 1/4( +Us o) = 1/4(1.5+2.5) = 4/4 =1.00
Ws= 1/4(u 7+Ue o) =1/4(2+3) = 5/4 = 1.25
5= 1/4(u s ) =1/4(1.5+2.5) =4/4 = 1.00
U= 1/4(u 7+Us») = 1/4(3+0) = 3/4 = 0.75
i=3, Uy s = 1/4(th 5+Up 5 = 1/4(0+0.5) =0.5/4 =0.12
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U4 = 1/4(U 5+Us 2) = 1/4(0.25+0.75) =1/4 =0.25
W.4=1/4(t s+Us.9) = 1/4(0.5+1) =1.5/4 =0.38
Wa= 1/4(Lé'3+U5'3) =1/4(075+125) =2/4 =0.50
W4 = 1/4(U 7+Us 9 =1/4(1+1) =2/4 =0.50
4= 1/4(U 5+Uy o) =1/4(1.25+0.75) =2/4=0.50
U 4= 1/4(U 5+Ug.5) =1/4(1+0) =1/4=0.25

j=4, 5= 1/4(Lb'4+U2'4) =1/4(0+025) =0.25/4 =0.061
U 5= 1/4(U 4+Us ) =1/4(0.12+0.38) =0.5/4 =0.12
U s= 1/4(Lb Uy ) =1/4(0.25+0.50) =0.75/4 =0.19
Us= 1/4(U ++Us ) =1/4(0.38+0.5) =0.88/4 =0.22
W s =1/4(t 4+Us ) =1/4(0.5+0.5) =1/4 =0.25
5= 1/4( Uy ) =1/4(0.5+0.25) =0.75/4 =0.19
U's= 1/4(t +Us 5 =1/4(0.5+0) =0.5/4 =0.12

Table 3.1. Solution to Example 3.1

] [ 0 1 2 3 4 5 6 7

0 0 2.0 4.0 6.0 8.0 10.0 12.0 14.0
1 0 1.0 2.0 3.0 4.0 5.0 6.0 7.0

2 0 0.50 1.0 1.50 2.0 2.50 3.0 1.50
3 0 0.25 0.50 0.75 1.0 1.25 1.0 0.75
4 0 0.12 0.25 0.38 0.5 0.5 0.5 0.25
5 0 0.11 0.12 0.26 0.24 0.28 0.24 0.12
4.0 Conclusion:

Table 3.1 shows that the numerical solutions sattet consistency, stability and convergence ppiecilt then follows

that the FTBS scheme approximates the solutionthéadvection equation (1) as seen in Table 3.1.
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