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We consider the one dimensional equation that governs the motion of a conserved 

scalar as it is advected by a known velocity field. We use the FTBS or forward in time 
and backward in space scheme for the Advection equation. If expanding the numerical 
scheme by Taylor series expansion and truncating it after the first two terms, we found 
that, the discretized equation satisfied the partial differential equation. A further result 
that admits the theorem of Lax, shows that the numerical properties of consistency, 
stability and convergence are satisfied. 
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1.0    Introduction 

We focus on the Advection equation 
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Here, u=u(x,t) and c=c(x,t) in which x is space and t is time. The Advection equation is hyperbolic partial differential 
equation that governs the motion of a conserved scalar as it is advected by a known velocity field [1]. 
For example the Advection equation can be considered in the form of a damped radio wave [2] or it can be applied to the 
transport of dissolved salt in water.  
Even in one space dimension and constant velocity the system remain difficult to solve. Since the advection equation is 
difficult to solve numerically, interest typically centers on discontinuous shock solutions, which are notoriously hard for 
numerical schemes to handle [3]. 
Using the FTBS or forward in time and backward in space scheme, given as 
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where α is some constant [4], and also, from a Taylor series expansion, it is shown that scheme (2) is first order accurate in 
space and time [5]. We have, 
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The truncation error on the right hand side is of the first order in both time and space as limit ∆�	"#$	∆� tends to zero. Thus 
the forward in time and backward in space scheme satisfies the Advection equation (1). We can also investigate the 
behaviour of scheme (2) for the initial condition in the form of a square wave given by 
 

f(x) =0, � < 0.1 
f(x) =1, 0.1 ≤ � ≤ 0.2                                                                                               (8) 
f(x) =0, � > 0.2   

 
and calculate also the numerical solution of the convection equation (1). 
Using the forward in time and backward in space scheme, the exact solution of equation (1) �	*  is one of pure translation [6], 
that is, 
 �+(x,t) =f(x-t)                                                                                                                   (9) 
     We now give a method which deal on the accuracy of a numerical solution compared to that of the exact solution of the 
differential equation. 
 
Equivalence theorem of  Lax [7]:  

For a well posed linear initial value problem with a consistent decretization, stability is the necessary and sufficient 
condition for convergence of the numerical scheme. 

We now discuss these properties of the numerical scheme one by one. 
 
2.0 Properties of numerical Scheme 

1.1     Consistency: 
A formal way of demonstrating consistency of a numerical scheme is to determine the function error by performing a 

Taylor series expansion and to show that it reduces to zero as ∆� and ∆� tend to zero. Using this method, it has been shown 
that, the FTBS scheme for the one-dimensional wave equation is consistent. 

 
1.2     Analysis of stability 

Consider the one-dimensional convection equation (1) and its discretization using the FTBS scheme given by equation (2). 
Let the analytical solution of the partial differential equation (1) be denoted by M, the exact solution of the discretized 
equation (2) be denoted by N, and the numerical solution of the discretized equation (2) obtained with finite machine 
accuracy be denoted by S. 
Then we can write 

Discretization error =M-N                                                                                       (10) 
Round-off error  =S-N                                                                                              (11)  
 

Since stability deals with accuracy with which the computed solution S approaches the exact solution N of the discretized 
equation, we can define error ɳ as 
 

ɳ=N-S or S=N-ɳ                                                                                                         (12) 
 

Using the superscript n for the finite step and the subscript i for the spatial location so that f(x,t) can be written as 
,	-∆�, #∆�� or as ,/
, we can denote the error at -�0 space location and #�0 time step as ɳ/
. 
Since the computed solution must satisfy the discretized equation (2), we have to machine accuracy, 
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Substitute 1/
 = 8/
 − ɳ/
, in equation (13), we obtain 
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Thus, the error equation and the computed solution of the discretized equation both posses the same form and the same 
growth property in time. 
Thus for stability, we should have  
                   

  ;ɳ45:7
ɳ45
	; ≤ 1            (15) 

 
1.3    Convergence 

Since the numerical scheme is consistent and stable, then by theorem, the scheme converges. 
 
3.0 Numerical experiment 
Example 3.1  
Solve the partial differential equation 

ut= ux 

u(0,t)=0 
u(1,t)=2 
u(x,0)=2x 
at the point x=i: i=0,1,2,3,…,7. 
and t=j/8: j=0,1,2,3,4. 
Solution 
c2=2, h=1, k=1/8  

a=c2k/h2   =
�×�
�×= =

�
> 

Then the equation is 
ui,j+1=1/4(ui-1,j+ui+1,j)    
u0,1 =0, u1,0 =2, u2,0 =4, u3,0 =6, u4,0 =8, u5,0 =10, u6,0 =12, u7,0 =14 
ui,j+1 =1/4(ui-1,j+ui+1,j) 
 j=0, u1,1=1/4(u0,0+u2,0)= 1/4(0+4) = 1.00 
       u2,1 =1/4(u1,0+u3,0) =1/4(2+6) =8/4 =2.00 
      u3,1 =1/4(u2,0+u4,0) =1/4(4+8) =12/4 =3.00 
      u4,1 = 1/4(u3,0+u5,0) =1/4(6+10) =16/4 =4.00 
      u5,1 = 1/4(u4,0+u6,0) =1/4(8+12) =20/4 =5.00 
      u6,1 = 1/4(u5,0+u7,0) = 1/4(10+14) = 24/4 =6.00 
      u7,1 =1/4(u6,0+u8,0) = 1/4(12+16) =28/4 =7.00 
 j=1, u1,2 =1/4(u0,1+u2,1) = 1/4(0+2)=2/4 = 0.50 
       u2,2 =1/4(u1,1+u3,1) =1/4(1+3) =4/4 =1.00 
       u3,2 =1/4(u2,1+u4,1) =1/4(2+4) = 6/4 =1.50 
       u4,2 =1/4(u3,1+u5,1) = 1/4(3+5) = 8/4 =2.00 
       u5,2 =1/4(u4,1+u6,1) = 1/4(4+6) =10/4 =2.50 
       u6,2 =1/4(u5,1+u7,1) = 1/4(5+7) =12/4 = 3.00 
       u7,2 =1/4(u6,1+u8,1) =1/4(6+0) = 6/4 =1.50 
j=2, u1.3 = 1/4(u0,2+u2,2) = 1/4(0+1) = 1/4 =0.25 
        u2,3 =1/4(u1,2+u3,2) = 1/4(0.5+1.5) =2/4 =0.50 
        u3,3 = 1/4(u2,2+u4,2) =1/4(1+2) =3/4 = 0.75 
        u4,3 = 1/4(u3,2+u5,2) = 1/4(1.5+2.5) = 4/4 =1.00 
        u5,3 = 1/4(u4,2+u6,2) =1/4(2+3) = 5/4 = 1.25 
        u6,3 = 1/4(u5,2+u7,2) =1/4(1.5+2.5) =4/4 = 1.00 
        u7,3 = 1/4(u6,2+u8,2) = 1/4(3+0) = 3/4 = 0.75 
j=3, u1,4 = 1/4(u0,3+u2,3) = 1/4(0+0.5) =0.5/4 =0.12 
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        u2,4 = 1/4(u1,3+u3,3) = 1/4(0.25+0.75) =1/4 =0.25 
       u3,4 =1/4(u2,3+u4,3) = 1/4(0.5+1) =1.5/4 =0.38 
       u4,4 = 1/4(u3,3+u5,3) =1/4(0.75+1.25) =2/4 =0.50 
       u5,4 = 1/4(u4,3+u6,3) =1/4(1+1) =2/4 =0.50 
       u6,4 = 1/4(u5,3+u7,3) =1/4(1.25+0.75) =2/4=0.50 
       u7,4 = 1/4(u6,3+u8,3) =1/4(1+0) =1/4=0.25 
j=4, u1,5 = 1/4(u0,4+u2,4) =1/4(0+0.25) =0.25/4 =0.061 
        u2,5 = 1/4(u1,4 +u3,4) =1/4(0.12+0.38) =0.5/4 =0.12 
        u3,5 = 1/4(u2,4+u4,4) =1/4(0.25+0.50) =0.75/4 =0.19 
        u4,5 = 1/4(u3,4+u5,4) =1/4(0.38+0.5) =0.88/4 =0.22 
        u5,5 =1/4(u4,4+u6,4) =1/4(0.5+0.5) =1/4 =0.25 
        u6,5 = 1/4(u5,4+u7,4) =1/4(0.5+0.25) =0.75/4 =0.19 
        u7,5 = 1/4(u6,4+u8,4) =1/4(0.5+0) =0.5/4 =0.12 
 

Table 3.1.                 Solution to Example 3.1    
j           i 0   1 2 3 4 5 6 7 

0 0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 
1 0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 
2 0 0.50 1.0 1.50 2.0 2.50 3.0 1.50 
3 0 0.25 0.50 0.75 1.0 1.25 1.0 0.75 
4 0 0.12 0.25 0.38 0.5 0.5 o.5 0.25 
5 0 0.11 0.12 0.26 0.24 0.28 0.24 0.12 
 
4.0 Conclusion:  

Table 3.1 shows that the numerical solutions satisfy the consistency, stability and convergence principle. It then follows 
that the FTBS scheme approximates the solutions for the advection equation (1) as seen in Table 3.1.  
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