A Method of Lines Solution of Reaction Kinetics Model of Polymerization in The Presence of Material Diffusion

${ }^{1}$ Durojaye M. O. and ${ }^{2}$ Olayiwola R. O.
${ }^{1}$ Department of Mathematics, University of Abuja, Abuja. Nigeria
${ }^{2}$ Department of Mathematics, Federal University of Technology, Minna

Abstract

This paper is on the semianalytical method of lines solution of reaction kinetics model of polymerization in the presence of material diffusion. The approach is to reduce the model partial differential equation to a vector system of ordinary differential equations and solve using standard methods for ordinary differential equations. Using this method we obtained temperature profiles for $p=1,2,3$ and the time dependent behavior of temperature for all the cases.

Keywords: Method of lines, Ode 15s.

1.0 Introduction

The method of lines (MOL) is regarded as a special finite difference method. It involves discretising the spatial domain of a partial differential equation (pde) and thus replacing thepartial differential equation with a vector system of ordinary differential equations (ODEs) that approximates the pde. We can then apply any integration algorithm for initial value ordinary differential equations to compute an approximate numerical solution to the pde.[1].The MATLAB package has strong vector and matrix handling capabilities, a good set of ODE solvers, and an extensive functionality which can be used to implement the MOL one of which is ode15s.

Ode 15 s is an implicit numerical differentiation formula of orders 1 to 5 for stiff systems. Ode 15 s like any other Matlab ode solvers has a built in local error estimate to control the step size. Moreover it is a variable order package which uses higher order methods and smaller step sizes when the solution varies rapidly [2].

In the rest of the paper, the reaction kinetic model in the presence of material diffusion is presented in section two of the paper. The method of lines solution is presented in section three, section four is on results presentation and discussion and conclusion is found in section five of the paper. The list of references concludes the paper.

2.0 Problem Statement.

Suppose that a test tube containing the monomer - initiator mixture occupies a region $\Omega \in R^{3}$ with monomer concentration, $M(x, t)$ and, the temperature of the mixture at the point $x \in \Omega$ and the time $t \geq 0$ is $T(x, t)$.Then for a free - radical polymerization, Golovaty [3, 4], presented a single step, effective kinetics model of monomer- to-polymer conversion as

$$
\begin{align*}
& \frac{\partial M}{\partial t}=-k M e^{\frac{E}{R_{g} T_{b}}\left(1-\frac{T_{b}}{T}\right)} \tag{1}\\
& \frac{\partial T}{\partial t}=\operatorname{div}(\kappa \nabla T)+k q M e^{\frac{E}{R_{g} T_{b}}\left(1-\frac{T_{b}}{T}\right)} \tag{2}
\end{align*}
$$

Corresponding author: Durojaye M. O., E-mail: mayojaye @ yahoo.com, Tel.: +27845223655/08036909516
Journal of the Nigerian Association of Mathematical Physics Volume 25 (November, 2013), 445 - 450
and assumed that T and M satisfy the initial conditions

$$
\begin{align*}
& T(x, 0)=T_{0} \\
& M(x, 0)=M_{0}, x \in[-L, L] \tag{3}\\
& T_{x}(-L, t)=0, \\
& M_{x}(\pm L, t)=0, \\
& T(L, t)=T_{b}, \tag{4}\\
& t \in\left(0, t_{0}\right)
\end{align*}
$$

where: κ is the thermal diffusivity of the mixture/final product
k is the effective pre-exponential factor in the Arrhenius Kinetics
R_{g} is the gas Constant.
E is the effective activation energy.
T_{b} is a reference temperature to be specified
$c=$ specific heat density
$\rho=$ mixture density
$q=-\frac{\Delta H}{c \rho}$, where $\Delta H=$ reaction enthalpy
Assuming that the test tube is one - dimensional, $\Omega=[-L, L]$, and that thermal diffusivity \boldsymbol{K} is constant (ignoring possible dependence of K on temperature and degree of conversion $\left(1-M / M_{0}\right)$. Then the problem (1) - (2) reduced to [3]

$$
\begin{align*}
& \frac{\partial M}{\partial t}=-k M e^{\frac{E}{R_{g} T_{B}}\left(1-\frac{T_{b}}{T}\right)} \tag{5}\\
& \frac{\partial T}{\partial t}=\kappa \frac{\partial^{2} T}{\partial x^{2}}+k q M e^{\frac{E}{R_{g} T_{b}}\left(1-\frac{T_{b}}{T}\right)} \tag{6}
\end{align*}
$$

where T and M satisfy the initial conditions

$$
\begin{align*}
& T(x, 0)=T_{0} \\
& M(x, 0)=M_{0}, x \in[-L, L] \tag{7}
\end{align*}
$$

And boundary conditions

$$
\begin{align*}
& T_{x}(-L, L)=0 \\
& M_{x}(\pm L, t)=0 \\
& T(L, t)=T_{b} \tag{8}\\
& t \in\left(0, t_{0}\right)
\end{align*}
$$

Supposing that a test tube containing the monomer - initiator mixture occupies a region $\Omega \in R^{3}$, let $M(x, t)$ denotethe monomer concentration and $T(x, t)$ the temperature of the mixture at the point $x \in \Omega$ and the time $t \geq 0$ and $\theta=\left(T-T_{b}\right) \frac{E}{R_{g} T_{b}^{2}}$ the non-dimensional temperature, Durojaye and Ayeni, (5) presented a reaction kinetics model of polymerization in the presence of material diffusion as

$$
\begin{align*}
& \frac{\partial M}{\partial t}=\frac{\partial^{2} M}{\partial x^{2}}-a M^{p} e^{\theta / 1+\varepsilon \theta} \tag{9}\\
& \frac{\partial \theta}{\partial t}=\frac{\partial^{2} \theta}{\partial x^{2}}+b M^{p} e^{\theta / 1+\varepsilon \theta} \tag{10}
\end{align*}
$$

where a, b and p are constants
with initial and boundary conditions

$$
\begin{align*}
& \theta(x, 0)=0 \\
& \theta_{x}(0, t)=\theta_{x}(1, t)=0 \tag{11}\\
& M(x, 0)=1-x \\
& M_{x}(0, t)=M_{x}(1, t)=0
\end{align*}
$$

Durojaye and Ayeni [5, 6], considered a particular case where $\mathrm{a}=\mathrm{b}$, so that combining the equations resulted in

$$
\begin{equation*}
\frac{\partial \theta}{\partial t}=\frac{\partial^{2} \theta}{\partial x^{2}}+b(1-\theta)^{p} e^{\theta / 1+\varepsilon \theta} \tag{12}
\end{equation*}
$$

Subject to initial condition

$$
\begin{equation*}
\theta(x, 0)=0 \tag{13}
\end{equation*}
$$

and boundary conditions

$$
\begin{align*}
& \theta_{x}(0, t)=0 \tag{14}\\
& \theta_{x}(1, t)=0 \tag{15}
\end{align*}
$$

Results on the existence of solution to this pde and properties of solution are given in [5, 6].
Durojaye and Ayeni [6] gave the numerical solution of the problem using the finite difference formula and gave results on the effect of reaction order on temperature. In a further work, Durojaye and Ayeni [7] solved the problem by the Adomian decomposition method showing the distribution of temperature with time for reactions of order 1,2 and 3 . This paper is a further work on [7]. The work solves the equation by the method of lines to show heat distribution in this polymerization reaction in order to obtain the spatial and transient heat flow of the reaction process.

3.0. Method of Lines Solution.

Using the usual second order central difference approximation for $\frac{\partial^{2} \theta}{\partial x^{2}}$, we have [8],

$$
\begin{equation*}
\frac{\partial^{2} \theta}{\partial x^{2}}=\frac{\theta_{i+1}-2 \theta_{i}+\theta_{i-1}}{(\Delta x)^{2}}+O\left(\Delta x^{2}\right) \tag{16}
\end{equation*}
$$

Substituting in (12) gives

$$
\begin{equation*}
\frac{d \theta_{i}}{d t}=\frac{\theta_{i+1}-2 \theta_{i}+\theta_{i-1}}{(\Delta x)^{2}}+b\left(1-\theta_{i}\right)^{p} e^{\theta_{i} / 1+\varepsilon \theta_{i}}, \quad i=1,2, \ldots, N-1 \tag{17}
\end{equation*}
$$

Thesecond order approximation for $\boldsymbol{\theta}_{x}$ is given as [9]

$$
\theta_{x}=\frac{\theta_{i+1}-\theta_{i-1}}{2(\Delta x)}+O\left(\Delta x^{2}\right)
$$

Applying this to the boundary conditions (14) and (15)we have

$$
\begin{equation*}
\theta_{i+1}=\theta_{i-1} \quad i=1 \text { and } i=N \tag{18}
\end{equation*}
$$

and substituting in (17) gives a system of approximating ordinary differential equations

$$
\begin{gather*}
\frac{d \theta_{i}}{d t}=\frac{2\left(\theta_{i+1}-\theta_{i}\right)}{(\Delta x)^{2}}+b\left(1-\theta_{i}\right)^{p} e^{\theta_{i / 1} / 1+\varepsilon \theta_{i},} \quad i=1 \\
\frac{d \theta_{i}}{d t}=\frac{\theta_{i+1}-2 \theta_{i}+\theta_{i-1}}{(\Delta x)^{2}}+b\left(1-\theta_{i}\right)^{p} e^{\theta_{i / 1} / 1+\varepsilon \theta_{i}}, \quad i=2, \ldots, N-1 \tag{19}\\
\frac{d \theta_{i}}{d t}=\frac{2\left(\theta_{i-1}-\theta_{i}\right)}{(\Delta x)^{2}}+b\left(1-\theta_{i}\right)^{p} e^{\theta_{i} / 1+\varepsilon \theta_{i}},
\end{gather*} \quad i=N \quad . \quad .
$$

which can be written as

$$
\begin{align*}
& \dot{\theta}_{1}=\frac{1}{(\Delta x)^{2}}\left(-2 \theta_{1}+2 \theta_{2}\right)+b\left(1-\theta_{1}\right)^{p} e^{\left(\theta_{1} / 1+\varepsilon \theta_{1}\right)} \\
& \dot{\theta}_{2}=\frac{1}{(\Delta x)^{2}}\left(\theta_{1}-2 \theta_{2}+\theta_{3}\right)+b\left(1-\theta_{2}\right)^{p} e^{\left(\theta_{2} / 1+\varepsilon \theta_{2}\right)} \tag{20}\\
& \dot{\theta}_{3}=\frac{1}{(\Delta x)^{2}}\left(\theta_{2}-2 \theta_{3}+\theta_{4}\right)+b\left(1-\theta_{3}\right)^{p} e^{\left(\theta_{3} / 1+\varepsilon \theta_{3}\right)} \\
& \vdots \\
& \vdots \\
& \dot{\theta}_{N-1}=\frac{1}{(\Delta x)^{2}}\left(\theta_{N-2}-2 \theta_{N-1}+\theta_{N}\right)+b\left(1-\theta_{N-1}\right)^{p} e^{\left(\theta_{N-1} / 1+\varepsilon \theta_{N-1}\right)} \\
& \dot{\theta}_{N}=\frac{1}{(\Delta x)^{2}}\left(2 \theta_{N-1}-2 \theta_{N}\right)+b\left(1-\theta_{N-1}\right)^{p} e^{\left(\theta_{N} / 1+\varepsilon \theta_{N}\right)}
\end{align*}
$$

This is a tridiagonal system of algebraic equations with initial condition

$$
\theta_{i}(0)=0
$$

The system of ordinary differential equations (ODEs) is then integrated using the Matlab integrator ode15s which is a stiff integrator since the ordinary differential equations in the system are sufficiently stiff [10].

4.0. Results

Results obtained are as shown on Figures 1 to 6 :

Journal of the Nigerian Association of Mathematical Physics Volume 25 (November, 2013), 445 - 450

Figure 3 Temperature field for $\mathrm{p}=3$, ncall $=256$

Figure 4: Graph of Temperature against time for $\mathrm{P}=1, \mathrm{t}=25$, ncall $=146$

Figure 5: Graph of Temperature against time for $\mathrm{P}=2, \mathrm{t}=250$, ncall $=164$

Figure 6: Graph of Temperature against time for $\mathrm{P}=3, \mathrm{t}=50,000$, ncall $=296$
Journal of the Nigerian Association of Mathematical Physics Volume 25 (November, 2013), 445-450

5.0. Conclusion

We have presented the semi analytical method of lines solution of the reaction kinetics model of polymerization in the presence of material diffusion.

Result shows that for
$\mathrm{p}=1$, the normalized temperature rises from zero and converges to 1 at $\mathrm{t}=25$
$\mathrm{P}=2$, the normalized temperature rises from zero and converges to 1 at $\mathrm{t}=250$
$\mathrm{P}=3$, the normalized temperature rises from zero and converges to 1 at $t=50,000$
This shows that the time required for the temperature to stabilize in a reaction of lower order is shorter than that required by a reaction of higher order.

It is also observed that the computational effort of the method of lines is quite modest as shown in the number of calls to the ordinary differential equation routine (ncall) for each computation (as shown on each figure).

We therefore conclude that the method of line is a good method for the solution of this problem.

References

[1]. Schiesser W E and Griffiths G W (2009): A Compendium of Partial differential Equation Models: Method of lines Analysis with MATLAB, Cambridge University Press, New York.
[2]. Ashino R, Nagase M and Vaillancourt R (2000): Behind and Beyond Matlab: Computers and Mathematics with applications, 40; 491-512.
[3]. Cardarell S.A; Golovaty, D, Gross, L.K; Vitaliy T. Gyrya; Zhu J(2005) : ANumerical study of one -step models of polymerization : Frontal versus Bulk mode. Physica D, 206, 145-165.
[4]. Golovaty .D. (2007): On step - function Reaction kinetics model in the absence of material diffusion. SIAM Journal on Applied Maths SIAP Vol. 67 issue 3, 792- 809.
[5]. Durojaye M.O and Ayeni R.O (2010): Reaction Kinetics Models ofPolymerization In The Presence Of Material Diffusion;ZUMA Journal of Pure and Applied Sciences (Journal of the Faculty of Science, University of Abuja) Vol 1,No 1, 72-82.
[6]. Durojaye M.O and Ayeni R.O (2011). Steady State Solution of Reaction Kinetics Model Of Polymerization In The Presence Of Material Diffusion: ZUMA Journal of Pure and Applied Sciences (Journal of the Faculty of Science, University of Abuja) Vol.9, 71 - 75.
[7]. Durojaye M.O and Ayeni R.O (2011). A Numerical Study of Reaction Kinetics Model of Polymerization In The Presence Of Material Diffusion Using the Finite Difference Scheme.Journal of the Nigerian Association of Mathematical Physics Vol. 18, 193-198.
[8]. Ames W.F (1977): Numerical Methods for Partial Differential Equations (2 ${ }^{\text {nd }}$ ed). Academic Press, Inc, Boston.
[9]. Mitchell and Griffiths (1980): The Finite Difference Method in Partial Differential Equations. John Wiley \& Sons Ltd, New York.
[10]. Lee H S, Matthews CJ, Braddock R D, Sander G.C and Gandola F (2004): A MATLAB method of lines template for transport equations; Environmental Modelling \& Software 19, 603-614.

