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Abstract

This paper is on the semianalytical method of lines solution of reaction kinetics
model of polymerization in the presence of material diffusion. The approach is to
reduce the model partial differential equation to a vector system of ordinary
differential equations and solve using standard methods for ordinary differential
equations. Using this method we obtained temperature profiles for p = 1, 2, 3 and the
time dependent behavior of temperature for all the cases.
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1.0 Introduction

The method of lines (MOL) is regarded as a spdiidk difference method. It involves discretisitige spatial domain
of a partial differential equation (pde) and theplacing thepartial differential equation with acter system of ordinary
differential equations (ODESs) that approximates ploe. We can then apply any integration algoritton ifitial value
ordinary differential equations to compute an agpnate numerical solution to the pde.[1].The MATLAtackage has
strong vector and matrix handling capabilities,cad)set of ODE solvers, and an extensive functipnahich can be used
to implement the MOL one of which is odel5s.

Ode 15s is an implicit numerical differentiationrfaula of orders 1 to 5 for stiff systems. Ode lks any other Matlab
ode solvers has a built in local error estimatedatrol the step size. Moreover it is a variabldesrpackage which uses
higher order methods and smaller step sizes wheesdhution varies rapidly [2].

In the rest of the paper, the reaction kinetic mad¢he presence of material diffusion is presdntesection two of the
paper. The method of lines solution is presenteseition three, section four is on results presemtand discussion and
conclusion is found in section five of the papéneTist of references concludes the paper.

2.0 Problem Statement.

Suppose that a test tube containing the monomenitiator mixture occupies a regiof [ R3with monomer
concentrationM (X,t) and, the temperature of the mixture at the poihi Q and the timet = QisT (X,t) .Then for a free
— radical polymerization, Golovaty [3, 4], presehta single step, effective kinetics model of monpnte-polymer

conversion as
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and assumed that T and M satisfy the initial chons
T(x0) =Ty
M (x,0) =M g, x0O[-L, L]
T, (-L,t) =0,
M (xL,t) =0,
T(L,t) = Tb
t0Otg)

where: K is the thermal diffusivity of the mixture/final gaduct
K is the effective pre—exponential factor in the Amhus Kinetics

R, is the gas Constant.

®)

(4)

E is the effective activation energy.
T, is a reference temperature to be specified

C = specific heat density
0 = mixture density

AH
g = ———, where AH =reaction enthalpy
cp

Assuming that the test tube is one — dimensiofhk= [-L, L], and that thermal diffusivityX" is constant ( ignoring

possible dependence & on temperature and degree of converf@% j Then the problem (1) — (2) reduced to [3]
0

R T T
M:_kMe g B
ot

T
2 RET [l_TbJ

AN T+que g'b

ot 6X2

where T and M satisfy the initial conditions
T (X,O) = TO
M (x,0) = MO,XD[—L, L]

And boundary conditions

T, (-L,L) =0,
M, (£L,t) =0,
TLY =T,
t0Otg)

Supposing that a test tube containing the monomeitiator mixture occupies a regida [ R, letM (X,t) denotethe

®)

(6)

()

(8)

monomer concentration aildX,t) the temperature of the mixture at the poixtlJQ and the timé = Oand
E

2
RgTh
polymerization in the presence of material diffusés

the non-dimensional temperature, Durojaye andnAy@®) presented a reaction kinetics model of

o=(T-Tp)
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2 6
oM a_M —aM peﬁ"‘f@ Q)
Ot 0x2
6
% = a_e +bM peﬁ*‘é‘g (10)
ot 6x2

where a, b and p are constants
with initial and boundary conditions

6(x,0) = 0
6,0t)=6,0t)=0 (11)
M (x,0) =1-x

M, (0,t) =M, (Lt) =0

Durojaye and Ayeni [5 6], considered a particalase where a = b, so that combining the equatemsgted in

29 _0° 6?+b(1 e)pe/’ffé’ (12)
ot ox?
Subject to initial condition
6(x,0)=0 (13)
and boundary conditions
6,(0t)=0 (14)
Oy (@t)=0 (15)

Results on the existence of solution to this pak@nperties of solution are given in [5, 6].

Durojaye and Ayeni [6] gave the numerical solutadrihe problem using the finite difference formalad gave results
on the effect of reaction order on temperature farther work, Durojaye and Ayeni [7] solved thelgem by the Adomian
decomposition method showing the distribution ofiperature with time for reactions of order 1, 2 &xd his paper is a
further work on [7]. The work solves the equatiognthe method of lines to show heat distributiorthis polymerization
reaction in order to obtain the spatial and trartdieat flow of the reaction process.

3.0. Method of Lines Solution

2
Using the usual second order central differencecqmation for—2, we have [8],
0X
29 6,1 -26+6
g 5: 1 =L +0(x%) (16)
0x (AX)
Substituting in (12) gives
6
|
dg 641 —26 +6. _ /, _
L= S0 ip-4)Pe Lreq i=12...,N-1(17)
dt (AX)
Thesecond order approximation f@ is given as [9]
6.1-6
6, = i e O(Ax?)
2(Ax)
Applying this to the boundary conditions (14) and (1&vave
9i+1:g|_1 i=land i=N (18)

and substituting in (17) gives a system of approximatitiinary differential equations
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dg,_2(6.1-6) % o
L= 20 A pa-g)Pe/ T i=1
dt (AX)?
G g +6 9'/
. . -26. ] )
46 O "Ry a-g)Pe/ M i=2..,N-1
dt (Ax)?
de; 2(9- - 9-) % 6
L2V A ha-g)Pe/ T i= N
dt (Ax)?
which can be written as
b= —(-20,+26, )+ b @-6;)P e(6./1+40.)
(Ax)
8,= ——(61 - 26, +65)+ b (1-6,)P e(%:/1+<0:)
(AXx)
=2 (6, - 285+0,)+ b (1-85) P £(0:/120.)
(Ax)
: 1
ON-1 = 7 (9N—2 ~20N-1+0N )* b (1- Oy _y) P el0w/Lre0,)
(Ax)
Oy = —— (201 - 20y )+ b -6y ;)P €Or/1+e0.)
(Ax)
This is a tridiagonal system of algebraic equations witfairgondition
g (0)=0

Jof NAMP

(19)

(20)

The system of ordinary differential equations (ODEs) entimtegrated using the Matlab integrator odel5s whieh is

stiff integrator since the ordinary differential equationthim system are sufficiently stiff [10].

4.0. Results
Results obtained are as shown on Figures 1 to 6:

0.8

o
o

0.4

Temperature, u(x,t)
Temperature, u(x,t)

t, time x, distance t, time X, distance

Figure 1  Temperature evolution for p=1, Figure T&2mperature evolution for p=2,

ncall=145 ncall=106
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Temperature, u(x,t)

0.6

t, time x, distance

Figure 3 Temperature field for p=3, ncall=256
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Figure 4: Graph of Temperature against time for P=1, t=25 71kl
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Figure 5: Graph of Temperature against time for P=2,t=2%l-=164
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Figure 6: Graph of Temperature against time for P=3, t=501@20I=296
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5.0. Conclusion

We have presented the semi analytical method of lines soltithwe eeaction kinetics model of polymerization in the
presence of material diffusion.

Result shows that for

p=1, the normalized temperature rises from zero and converfjex ts25

P=2, the normalized temperature rises from zero and converges to260

P=3, the normalized temperature rises from zero and converges to5D,000

This shows that the time required for the temperature tdiséaim a reaction of lower order is shorter than that required
by a reaction of higher order.

It is also observed that the computational effort of thehotktf lines is quite modest as shown in the numbealtd to
the ordinary differential equation routine (ncall) for each potation (as shown on each figure).

We therefore conclude that the method of line is a good metididef solution of this problem.
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