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In this paper, we present twonew iterative schemes for solving problems of 

nonlinear equations from the classical Taylor’s series method. The methods are 
constructed by applyingthe Adomian decomposition method and are compared with 
other iterative methods using a two wayanalysis of variance (ANOVA).They were 
found to be very efficient and better than some of the existing schemes. Some 
numerical examples are given to justify the efficiency of the new iterative schemes. 
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1.0    Introduction 

Finding the easiest and convenient way of solving problemsof nonlinear equations is very importantin science and 
engineering. This problem is also termed as root finding problem. The value of x which satisfies f (x) = 0 is called root of f (x) 

and more often it is called root at zero of ),(xf where f (x) is a continuously differentiable real or complex function.Besides 

polynomial equations, there are many problems in science and engineering applications that involve the function of 
transcendental and exponential nature. Most often, numerical methods are used to obtain the approximate solution of such 
problems.Newton (or Newton-Raphson) method is probably the most widely used algorithm for finding simple roots[1], 

which starts with an initial approximation 0x closer to the root x and generates a sequence of successive iterates { }∞
=0kkx

converging quadratically to simple roots.A new method for solving nonlinear functional equations of all kinds was proposed 
byAdomian [2] which is now well known as the Adomian decomposition method. This method has been applied to various 
problems both deterministic and stochastic, linear and nonlinear arising in science and engineering.The method decomposes 
the nonlinear part as a series function.The Adomian decomposition method tackles the problem directly and in a 
straightforward fashion without using linearization or any other restrictive assumptions [3].The series converges fast to the 
exact solution, if there is a single solution possible, and to one of the possible solutions, if several solutions exist [2]. 

Abbasbandy [4] proposed an iterative method for improving the Adomian decomposition method. The scheme is based 
on both Adomian decomposition method and Newton-Raphson method.The scheme for the method is given as 
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Basto et al[5] developed a third-order convergence method, which is also based on Newton-Raphson method and 
Adomian decomposition method and considering the Taylor’s series expansion around .x Basto’s iterative scheme is given as 
follows: 
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In this paper, we develop two new iterative methodsfor solving nonlinear equations. Both methodsconverge cubically 
and do not require the computation ofsecond derivatives.These methods are derived by considering the Taylor’s series 
expansion around x of higher order andthen applying Adomian decomposition method.The new iterative methodsare 
compared with other existing methods such as Newton-Raphson, Adomian’s decomposition method, Abbasbandy’s method 
and Basto et al method.The proposed methods behave equally or better than some of the existing schemes. 
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2.0 Methodology used in this study: 
We begin by stating the Taylor’s theorem as follows.  

Taylor’s Theorem:Suppose ],[ bacf n∈ , that 1+nf exists on ],[ ba , and ],[0 bax ∈ . For every ],[ bax∈ , there 

exists a number ( )xξ between ox  and x with
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 (called theremainder term or truncation error). 

By taking the first two terms of the series and ignoring others,the Newton-Raphson method was developed and is given 

as follows:
( )
( )n

n
nn xf

xf
xx

′
−=+1 where 1+nx is the new iterate and nx is the pervious iterate. 

The Adomian approach;  
The decomposition method using Adomian polynomials was used to solve different problems in applied mathematics in 

[6].The method is outlined as follows: 

consider fFy =  

where F is a nonlinear differential operator and both y and f are functions oft . Rewriting the equation in operator form 

we get  

fNyRyLy =++                                                        (1) 

whereL is an operator representing the linear portion of F which is easily invertible [2], Ris the remainder of the linear 

portion, and N is a nonlinear operatorrepresenting the nonlinear terms in F. Applying the inverse operator 1−L , equation (1) 
becomes 

NyLRyLfLLyL 1111 −−−− −−= . 

Since F was taken to be a differential operator and L is linear, L 1− would represent integration and with any given initial 

or boundary conditions, LyL 1−   will give an equationfor y incorporating these conditions[2]. This gives 

NyLRyLtgty 11)()( −− −−= . 

Where )(tg  represents the function generated by integrating f and using the initial/boundary conditions. Assume that 

the unknown function can be written as an infinite series 

∑
∞

=

=
0

)()(
n

n tyty  

We set 0y = )(tg  and the remaining terms are to be determined by a recursive relationship defined below. This is found 

by first decomposing the nonlinear term into a series of Adomian polynomials,nA . The nonlinear term is written as 

∑
∞

=

=
0n

nANy  

where nA are functions called Adomian polynomials depending on ,,,, 10 nyyy L [4] 

To determine the Adomian polynomials, a grouping parameter,λ  is introduced as follows: 
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Then the sAn '  can be generated by using the expression 
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Itshould be noted that λ  is not a “smallness parameter” [2].

 The first few polynomials for all kind of nonlinearity [2] are given as  
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3.0  Construction of the new schemes  
3.1New iterative scheme 1 

Consider the Taylor’s series expansion around ,x with ,0 hxx =− to obtain
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Truncating the higher order values of the series from the third order and equating to zero, we obtain 
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We now use Adomian decomposition method to get  
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The new iterative scheme 1 is  
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3.1.1Convergence analysis 
Consider the iteration function g as 

−= xxg )( ( )
( ) ( ) ( ) 3

3

2

2

][2

)]([

][2

)]([

xf

xf

xf

xf

xf

xf
′

−
′

−
′

 

The following theorem for convergence of the scheme holds. 

3.1.2Theorem:  Let ∗x  be the solution of the equation ( ) ,0=xf .2Cf ∈ If ( ) 0≠′ ∗xf  then there exists an interval 

I containing ∗x such that for ,0 Ix ∈ the iterative scheme (7) converges to the only solution of  ( ) 0=xf  belonging to .I  

Proof: The statement ( ) ,0=∗xf ( ) 0≠′ ∗xf ⇒ [ ] [ ] 0)(,0)(
32 ≠′=′ ∗∗ xfxf coupled with the fact that 2Cf ∈

implies that ( ) ∗∗ = xxg and g continuous differentiable at .∗= xx  

Thus ( ) 0=′ ∗xg < 1(Appendix C).There existsan ε > 0 such that for  ( ),, εε +−∈ ∗∗ xxx ( )xg′ < 1, and by the 

fixed point theorem[7],the iterative scheme ( )xgxn =+1  converges to the unique solution in that interval. 

3.1.3Definition:[7]let nxx −∗ be the truncation error in the nthiterate. If there exists a number 1≥p  and a constant 

0≠c  such that  

c
xx

xx
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lim , 

then p is called the order of convergence of the method. 
Hence, the following theorem holds: 
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3.1.4Theorem: consider the nonlinear equation ( ) .0=xf suppose .4Cf ∈ Then for the iterative method (7), the 

convergence is at least of order 3. 
Proof; 
Consider the iterative method (7) 
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We used maple17 software, to find gg ′′′, and .g ′′′  

From Taylor limited expansion of ( )nxg  around ,∗x we get, for min( ) ( )∗∗ xxxx nnn ,max<<, ξ  

( ) ( )∗∗
+ −=− xgxgxx nn 1  

( )( ) ( ) 32 )(
6

)(
2

)( ∗∗
∗

∗∗ −
′′′

+−
′′

+−′= xx
g

xx
xg

xxxg n
n

nn

ξ
      (10) 

From equations(8)and (10)and for ,∗≠ xxn we get         

( )
6)(

)(
3

1 n

n

n g

xx

xx ξ′′′
=

−
−

∗

∗
+  

The statement 4Cf ∈ implies that 3Cg ∈  in the neighborhood of interest of .∗= xx Hence for ( ) 0≠′′′ ∗xg  

( ) ( )
.0

66

lim

)(

)(
lim

3
1 ≠

′′′
=

′′′
=

−
− ∗

→∞
∗

∗
+

→∞

xgg

xx

xx n
n

n

n

n

ξ
 

⇒ The new scheme 1 is of order three. 
 
3.2New iterative scheme 2  

Consider the Taylor’s expansion for higher order around ,x with ,0 hxx =− to obtain 
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Truncating for higher order values of the series from the fourth order and equating to zero, we obtain 
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Applying Adomian decomposition method, we get 
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If α is the root of the equation then  
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3.2.1Convergence analysis 
Consider the iteration function g as  
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The following theorem for convergence of the scheme holds. 

3.2.2Theorem:  Let ∗x  be the solution of the equation ( ) ,0=xf .4Cf ∈ If ( ) 0≠′ ∗xf  then there exists an interval 

I containing ∗x such that for ,0 Ix ∈ the iterative scheme (14) converges to the only solution of  ( ) 0=xf  belonging to .I  

Proof: The statement ( ) ,0=∗xf ( ) 0≠′ ∗xf ⇒ [ ] [ ] 0)(,0)(
42 ≠′=′ ∗∗ xfxf coupled with the fact that 4Cf ∈

implies that ( ) ∗∗ = xxg and g continuous differentiable at .∗= xx  

Thus ( ) 0=′ ∗xg < 1(Appendix D). There exists an ε > 0 such that for  ( ),, εε +−∈ ∗∗ xxx ( )xg′ < 1, and by the 

fixed point theorem[7],the iterative scheme ( )xgxn =+1  converges to the unique solution in that interval. 

The following theorem on the order of convergence holds. 

3.2.3Theorem: consider the nonlinear equation ( ) .0=xf suppose .6Cf ∈ Then for the iterative method (14), the 

convergence is at least of order 3. 
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We used maple17 software, to find gg ′′′, and .g ′′′  

From Taylor limited expansion of ( )nxg  around ,∗x we get, for min( ) ( )∗∗ xxxx nnn ,max<<, ξ  

( ) ( )∗∗
+ −=− xgxgxx nn 1  
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⇒ The new scheme 2 is of order three. 
To demonstrate the performance of the two new schemes, we constructed twenty five examples of different natures as in 

Appendix A. With those examples, we compared the two methods with the following earlier methods: 
i. Adomian decomposition method 
ii.  Abbasbandy 
iii.  Basto et al and 
iv. Newton-Raphson  

The comparison was carried out in terms of the number of iterations obtained using the methods. In each case, the 
comparison was done only for those methods which converge for the particular numerical example. The results for the 
comparison are given in Table E under Appendix B.  
 
4.0  Analysis of result 

An analysis of variance was carried out on the results obtained in Table E andthefollowing conclusion can be drawn 
considering the confidence interval of 95%.Since p=0.01<0.05 for the number of iterations, we conclude that there is 
significant difference between the number of iterations obtained for the different methods (see Table A).On the other hand, 
since p=0.294>0.05 for the solutions,we conclude that there is no significant difference in the average solutions obtained 
using individual methods. The actual difference is in the number of iterations which was investigated further, using the 
Duncan Multiple range (Post Hoc Test) test displayed in Table B. 

From the Duncan Multiple range, we can deduce that in the first homogeneous subset, we have Basto et al, Newton 
Raphson and New Scheme 1 with the least number of iterations. In the second homogeneous subset, we have Abbasbandy 
and New Scheme 2 with higher number of iterations. In the last homogeneous subset, we have Adomian method with the 
highest number of iterations. Full details are shown by the descriptive statisticswhich is displayed in Table C. 

 
Two-way ANOVA Results 
TableA: Significant difference effects 

Source Sum of Squares df Mean Square F Sig. 
Iteration 58.416 7 8.345 2.994 0.010 
Solutions 142.660 44 3.242 1.163 0.294 
Iteration * Solutions 62.222 36 1.728 0.620 0.935 
Error 156.083 56 2.787   

Total 424.166 
14

4 
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Table B: Performance of different homogeneous subsets 

Method N Subset for alpha = 0.05 

1 2 3 
Basto et al 25 2.24   
Newton Raphson 25 2.48   
New Scheme 1 25 2.84   
Abbasbandy 22  2.95  
New Scheme 2 25  3.36  

Adomian 23   3.83 

Means for groups in homogeneous subsets are displayed. 

 

Table C:Descriptive statistics on the Number of Iterations  

 

 M
ean 

Std. 
Deviation 

Std. 
Error 

95% Confidence Interval for 
Mean 

Mini
mum 

Maxi
mum 

Lower 
Bound 

Upper 
Bound 

Newton 
Raphson 5 

2
.48 

0.770 
0.15

4 
2.16 2.80 1 4 

Basto et al 
5 

2
.24 

1.268 
0.25

4 
1.72 2.76 1 7 

Abbasbandy 
2 

2
.95 

1.495 
0.31

9 
2.29 3.62 1 7 

New 
Scheme 1 5 

2
.84 

1.179 
0.23

6 
2.35 3.33 1 7 

New 
Scheme 2 5 

3
.36 

1.753 
0.35

1 
2.64 4.08 1 9 

Adomian 
3 

3
.83 

1.922 
0.40

1 
2.99 4.66 1 8 

 
Table C shows that the individual methods have a minimum of one iteration and the new scheme 2 has the highest 

number of iterations. The Newton-Raphson method displayed itselegance by having a maximum of four iterations, while 
Basto et al, Abbasbany and the new scheme 1have equal number of highest iterations of seven. This shows that the new 
scheme 1performs equally and efficiently like the best existing methods.  

 
5.0  Conclusion 

We have presented two simple iterative schemes, which can be used to find roots of nonlinear functional equations.The 

two schemes are derived from Taylor’s series expansion and Adomian method,with the assumption that
( )
( ) 1≈
′
′′

xf

xf
. In the 

first scheme three terms of the Taylor’s series are used while in the second scheme, four terms of series are used. The New 
schemes have been constructed by also applying Adomian decomposition method to increase accuracy. The schemes are 
compared with Newton method[1],Basto et al[5], Abbasbandy[4] and Adomian method[2]and from numerical results, it is 
shown that the schemes are competitive with the other methods.In terms of computational cost, the New schemes are at an 
advantage since they are free of the second derivative making them much easier and timesaving.From the numerical results, 
the New scheme 1appears to be more robust than the New scheme 2. 
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APPENDIX A 
 

1. 01.022 =++ xe x  
2. 0672 23 =+−− xxx  

3. 0193 =+− xx  

4. 006.133 =−− xx  

5. 0463 =+− xx  

6. 05sin32 =−− xx  

7. 0133 =+− xx  

8. 016ln3 =−− xx  

9. 032cos =+− xx  

10. 02ln =−+ xx  

11. 07124 =+− xx  

12. 01.03 =−− xx  

13. 05.0sin =++ xx  

14. 02 =−− −xex  

15. 0884 23 =+++ xxx  

16. 01cos3 =−− xx  

17. 07ln2 =−− xx  

18. 025.025.12 =+− xx  

19. 037.215.52 =++ xx  

20. 08114 =+− xx  

21. 0243 =+− xx  

22. 03ln =+− xx  

23. 03=−− xex
 

24. 011122 2 =+− xx                  25. 0143 =−− xx  

 

APPENDIX B 
Table E: Comparison Between Number Of Iterations For Twenty Five Different Examples. 

Problems 
Initial starting 

point, 0x  

Methods used/ Number of Iterations 

NR BS ABB NS1 NS2 AD  
1 -0.05 3 2 5 2 2 NC  
2 0.86 4 2 NC 3 4 4  
3 0.11 1 2 2 1 2 6  
4 -0.35 2 1 2 2 2 8  
5 0.67 3 2 5 3 3 3  
6 2.5 3 2 NC 3 4 7  
7 0.33 3 2 3 2 2 3  
8 5.3 2 2 3 4 4 1  
9 1.5 2 2 2 2 2 1  
10 2 3 2 1 4 4 NC  
11 0.58 2 4 7 2 3 4  
12 -0.1 2 1 1 1 1 2  
13 -0.5 3 2 3 3 3 5  
14 2 3 2 2 3 3 6  
15 -1 1 4 4 7 6 6  
16 0.33 3 7 3 3 3 3  
17 3.5 3 2 2 3 3 2  
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18 0.2 3 2 2 2 3 4  
19 -0.2 2 1 5 4 3 2  
20 0.73 3 3 4 3 3 2  
21 0.5 2 2 2 3 3 6  
22 3 3 3 NC 3 7 3  
23 -3 2 1 2 3 2 4  
24 0.92 3 2 3 3 9 3  
25 -0.25 1 1 2 2 4 3  

 
Key: 
NR=Newton-Raphson, BS=Basto et al, ABB=Abbasbandy, NS1=New scheme 1, NS2=New scheme 2, AD=Adomian. 
NC=Not converging. 
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