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                       Abstract 
 

Several statistical measures such as Mallows Cp statistic, coefficient determination r2, 

adjusted r2, standard error of estimates and forward stepwise regression are used as a 
criterion for the selection of best subsets regression models in a multiple regression 
analysis. The best subset fitted models are selected among competitive models based on Cp 
statistic ≤ (P + 1) which means a small biased, the highest value of adjusted r2, highest 
value of  r2, lowest value of standard error of estimates, low bivariate correlation among the 
predictors. The predictors X3 (PARKING) and X5 (INCOME) was removed from the model 
due to non significant effects .The selected best fitted model through studentized residuals 
(STR) against the predicted value	(�)�   are used to evaluate the aptness of the fitted model 
.The model X4 (SHOPCNTR) demonstrate some anomalous features and was improve upon 
by log transformation .The final fitted model was  

Yi = 37.82 – 0.0021X1 – 0.531X2 + 0l0gX4.With iteration method of outlier detention, 
row 5, row 7 and row 18 of Table 8 was removed from the model because each of the value 
for standardized residuals is outside the range of 2 x standard deviation or -2 x standard 
deviation. At each evaluation process, there was a greater improvement in the regression 
coefficient. The standardized residuals, leverage points, and studentized residuals of Table 8 
were used to detect outliers as influential. For studentized residuals, any value that exceed 
+2(up) and -2(down) are regarded as an outlier. The average leverage value is   

�
� , where p 

is the number of predictors (the number of coefficients plus one for the constant) and n is 

the sample size. Leverage point greater than 
	
�		
�   should be carefully examined. 
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1.0    Introduction 

Regression analysis is an important statistical technique, whereby one(X1) or more independent variables(X1, X2,…..,Xk) 
are used to predict a single dependent variable (y). In this case, the optimal model is not ascertained. In a complex multiple 
regression situations, when there is large number of independent variables (X1, X2, X3,…….,Xn) which may or may not be 
relevant for making predictions about the dependent variable(y), it is important to be able to reduce the models to contain 
only the variables which provide statistical significant information about the independent variables. To understand this 
regression effectively, the researchers must be aware of and uses of the diagnostics measures and plots that have been be 
developed for assessing the best fitted model. 

 There are several methods available in literature for selection of best independent variables among several predictors. 
The selection of the best optimal model is based on the best subset analysis and forward stepwise method using collinearity 
diagnoses. The forward stepwise procedures help to ascertained the significant and low significant models to the dependent 
variable(y) and the non significant model is removed and the model re estimated again for further transformation. 

 Transformations on the predictors are done by trial by error means. Various transformations are tried until one get a 
satisfactory model. The log Transformation used validates the regression assumption of linearity, normality and constant 
variance of the error term and improves regression coefficients. But deciding which variables to be included in the regression 
model is not always trivial, due to tedious nature of data computation; statistical software was used to evaluate the data for 
easy results. 
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1.1. Theoretical Analysis and its Applications 
The Coefficient of Determination (r2) and Adjusted R2 Criterion 
Coefficient of Determination (r2) is a statistic that gives some information about the goodness of fit of a model. In a 

regression, r2 is a statistical measure of how well the regression line approximates the real data points. Everitt [1] defines r2 as 
the Coefficient of determination. R2 is the square of the correlation between two variables. Nagelkere [2] Indicates that r2 in 
the range of -1 to 1 perfectly fits the regression line. From Table 2, 
�	��	0.700 is 70% at which the variation in the response 
variable can be explained by the independent variables? The remaining 30% can be attributed to unknown 

  The model with the highest value of r2 provides the closet fit. However, the major drawback of r2 is that as the 
model increased, r2 goes high whether the extra variables provide any important information about the dependent variable(y) 
or not. Therefore, it makes no sense to define the best model as the model with the largest r2 value.  A common way to avoid 
this problem is to used the adjusted version of r2 instead of r2 itself. The adjusted r2 statistic for a model with k explanatory 
variables is given by 


���� = [1 −	
�.��…..�� )	 � !� � !]                                                 (1) 

Where  
P denotes the number of explanatory variables in the regression equation. 

�.��…..��  denotes the coefficient of determination for full regression model 
The r2 adjusted does not necessarily increase when the numbers of predictor variables increase. It increased when the data has 
significant effects on the model. According to coefficient of determination (r2) and adjusted r2 criterion, one should choose 
the model that has the largest adjusted r2 and r2 

Some researchers suggest that the adjusted r2 be computed to reflect both the number of explanatory variables in the 
model and the sample size. Adjusted r2 for full model was computed with the above formula of equation (1)  

1 – #(1 − 0.700) �$ !
�$ % !& = 1 – #(0.3) !(!)&. 

Adjusted r2 = 0.593 
 

Mallows Cp Statistic  
 

Gilmour[3] and Mallows[4] sees Cp statistic as a measure for assessing the fit of a regression model that has been 
estimated using ordinary least squares. It is applied in the context of model selection, where a number of predictor variables 
are available for predicting some outcome and the goal is to find the best model involving a subset of these predictors.  
  Mallows[4] have suggested using Cp as the best criterion for choosing a model among alternative competitive 
models .The model are unbiased when Cp ≤ * + 1. For other illustration and comments on interpretation sees 
Mallows[4],Goldman and Toman[5] or Daniel and Wood[6] . One disadvantage of Cp is that it seems to be necessary to 
evaluate Cp for all or most of the possible subsets to allow interpretation.   The ,�	statistic as defined by Mallows [4] is 
denoted by                                                     

,- = 	 (! ./0)(� 1)! .20) −	[3 − 2(- + 1)]			                                                                                        (2) 

Where 
P denotes number of independent variables included in the regression model 
T denotes Total number of parameters (including the intercept) to be estimated in the full regression model 
56� denotes coefficient of multiple determinations for a regression model that has P independent variables 
 51�   denotes coefficient of multiple determinations for a full regression model that contains all T estimated parameters.  
The ,- for full model was computed with the above formula of equation (2)  
N = 20 P = 5, T = 5+1 = 6, 5�	� = 0.700, 51		� = 0.700 

Cp = 
(! $.8$$)(�$ �)

! $.8$$ −	[20 − 2(5 + 1)],  
Cp = 6 
 
Standard Error of the Estimate (SEE) 

The standard error of estimate is another measure of the accuracy of our predictors and a means of model inclusion. 
It is the square root of the sum of the squared errors divided by the degrees of freedom. It represents a measure of variation 
around the regression line. It is also used in estimating the size of the confidence interval for the predictions. For more details 
see Neter,Wassermanann and Kunter [7] 
The standard of estimates is defined as 

:;<=	>?	;@<�AB;	BAA>A;� �  = :∑A0� �.                                                (3) 
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The standard error for full model was computed with the above formula of equation (1). The error sum of squares is denoted 
as 225.110 and n is 20.  

Therefore :��%.!!$�$ �   is 4.0099 

 
2.0 Data Analysis with Applications of Theoretical Formula of Equation (1), (2), and (3) 
 
Table 1: Collection of Twenty independent pharmacies in an attempt to predict prescriptions volume (sales per month). The 
data in Table 1 will be used to detect all the values of the best subset analysis 
 

FLOOR_SP(X1) PRESC_RX(X2) PARKING(X3) SHOPCNTR(X4) INCOME(X5) 

4900 9 40 1 18 
5800 10 50 1 20 
5000 11 55 1 17 
4400 12 30 0 19 
3850 13 42 0 10 
5300 15 20 1 22 
4100 20 25 0 8 
4700 22 60 1 15 
5600 24 45 1 16 
4900 27 82 1 14 

3700 28 56 0 12 
3800 31 38 0 8 
2400 36 35 0 6 
1800 37 28 0 4 
3100 40 43 0 6 
2300 41 20 0 5 
4400 42 46 1 7 
3300 42 15 0 4 
2900 45 30 1 9 
2400 46 16 0 3 

 
Source of data: Hilderland and Lyman[8] 
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Table 2:The output of Best Subsets Analysis for Drugstore Volume Obtained from Table 1 Analysis   
DEFGHI	JD	FKLHM  I	 NO PLQ	I	 RSL	HIIKI O + T UPIJPGMHR	JD 

	FKLHM 
CONSIDER 
THE 
MODEL 

2             * 0.64
7 

2.47
4 

0.606 3.947 3 X2X4 YES 

2             * 0.66
6 

1.60
6 

0.626 3.842 3 X1X2 YES 

3               *     0.66
3 

3.75 0.599 3.98 4 X2X3X4 YES 

3
* 

0.66
6 

3.57
1 

0.604 3.96 4 X1X2X5 YES 

3               * 0.67
9 

2.96
3 

0.619 3.877 4 X1X2X3 YES 

3               * 0.69
0 

2.43
6 

0.633 3.81 4 X1X2X4 YES 

4              * 0.68
1 

4.90
9 

0.595 3.998 5 X1X2X3X5 YES 

4              * 0.69
3 

4.31
8 

0.611 3.918 5 X1X2X4X5 YES 

4              * 0.69
8 

4.06
2 

0.618 3.88 5 
 

X1X2X3X4 YES 

5             ** 0.70
0 

6 0.593 4.009 6 X1X2X3X4X5 YES 

 
 Each values of r2 in Table 2 are high, but the full model (**)  has the highest r2 value of 0.700.  Based on r2 

criterion, the full model is selected for prediction. Contrarily, the full model violates the criterion for adjusted r2 and standard 
error of estimates. The full model has a lower adjusted r2 value of 0.593 and a high standard error of 4.009. Based on 
adjusted r2 value and standard error criterion, it is not eligible for model inclusion. The adjusted r2 value of 0.63 and lowest 
standard error of estimates of 3.81 in Table 2 shows that model X1, X2 and X4 is included for prediction. The entire model 
with (*) satisfies the condition	��
		,- ≤ * + 1  and are good for model inclusion according to Cp statistic. This is an 
indication that the Mallows Cp statistic is confusing, biased and requires some further estimation in other to get the best 
optimal model. This uncertainties of best subset analysis resulted to the use of stepwise estimation  
 
3.0  Stepwise Estimation 

This is another strong measure for model inclusion in line with the best subset analysis. The stepwise estimation is a 
more advanced, reliable and tedious ways of choosing the best fitted model for further analysis. Many researchers prefer the 
used of stepwise estimation as the best form of model inclusion. In building optimal model with stepwise, the steps below has 
to be thoroughly diagnosed to ensure easy analysis 

Steps 1: The first variable included is the one that has the highest r2 value for predicting y; assume that this variable is 
called V!.or the variable that has the highest negative or positive value correlation with y is selected. 

Steps 2: The second variable is the model when combined V! , yields the highest r2 value; call V�.If there is any degree 
of collinearity among the x’s, V� may not have the largest r2

yx  value 

Steps 3: The third variable included by forward selection yields the highest r2 value when combined with V! and	V�. The 
process continues in this same manner 

Step 4: The process stops when there is no additional increased of r2 when others models are added 
Step 5: The best fitted model through studentized residuals against the predictors of interest are used to test the 

regression assumptions of linearity, constant variance, normality and independence of the error terms 
Step6: Violations of any of the regression assumptions of step 5, requires a transformation to improve on the model and 

to some extend validate the assumption 
Step 7: Check if an outliers is detected. Any value of the standardized residuals outside  
the range of 2 x standard to -2 x standard deviation should be removed from the model. Alternatively,  
the standardized residuals, the studentized residuals and leverage points are another means of outlier 
 detention.  
Step 8: The final model is re estimated 
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Model Building with Stepwise Estimation:  
Table 3: Correlation Matrix of Independent Pharmacies Data: Selecting the First variable 
 

 Correlations 

Predictors (Y) (X1) (X2) (X3) (X4) (X5) 
VOLUME(Y) 1.000 .183 -.663 -.069 -.203 .385 
FLOOR_SP(X1) .183 1.000 -.751 .504 .710 .863 
PRESC_RX(X2) -.663 -.751 1.000 -.328 -.341 -.845 
PARKING(X3) -.069 .504 -.328 1.000 .482 .393 
SHOPCNTR(X4) -.203 .710 -.341 .482 1.000 .645 
INCOME(X5) .385 .863 -.845 .393 .645 1.000 

 

Table 3 display’s the correlation among the five predictors and their correlations with the dependent 
variable(Y).Examination of the correlation matrix of Table 3 indicate that the predictor(X2) is most closely correlated with Y, 
having a high negative correlation of -0.663. Although X2 has a very high correlation with X5 and X1 causing serious 
multicollinearity problem, but has a very low correlation with X3 and X4, upon that, the first step is to build a regression 
equation with model X2 

Table 4: Inclusion of Model X2 (PRESC_RX)  
Multiple R Multiple R 2 Adjusted R2 Std Error of 

Estimate 
F Statistics P Value 

0.663 0.439 0.408 4.835 14.105 0.001 
 
Table 5: Inclusion of Model X4 (SHOPCNTR)  
Multiple R Multiple R 2 Adjusted r2 Std Error of Estimate T test 
0.804 0.647 0.606 3.947 15.584 
 

The output of correlation matrix of Table 3 shows that model X5 has the next higher correlation with Y of 0.385, but 
the problem with X5  in Table 3 is that it has a collinearity problem due to high correlation with X1(0.863), X4(0.710), 
X3(0.504) and X2(-0.751). On that note, X5 was not chosen for inclusion. Predictor X4 was included into the model with X2 
because it has a low collinearity problem with X2(-0.341), and X3(0.482). The multiple R and r2 values have both increased 
with the addition of X4. The r2 has increased by the 19.8% 

 
Table 6: Inclusion of Model X1 (FLOOR_SP) 
 
Multiple R Multiple R 2 Adjusted R2 Std Error of 

Estimate 
F Statistics Durbin-Watson 

Statistic 
0.831 0.691 0.633 3.809 11.911 2.376 
 

With model X1 into the regression equation, the value of r2 in Table 6 increased by 0.27%. No additional values will 
be gained by adding the model X3 and X5 

 
4.0  Evaluating the Final Model to Assessed the Assumptions of Regression Analysis 

The final fitted model  
 Y = b0 + b1X1 + b2X2 + b4X4 + ei                                             
 Will be used to address two issues 

(i)  Meeting the regression assumptions  
(ii)    Identifying the influential data points called outliers. Outliers are data points that are far away from the mean when 

analyses. Outliers are removed from a regression model when the ordered standardized residuals (Zres) is outside the 
range of  2 x standard deviation  and -2 x standard deviation  and the model is re estimated again. This iteration 
continues until no further outliers are detected. 

  The principal measure used in evaluating the regression assumption is the residuals. For comparison purpose, 
Mosteller and Tuckey[9] prefer the used of studentized residuals versus the predicted(y^) and the predictors(X1,X2,…,Xk) to 
display assumption validation. 

 
 
 

Journal of the Nigerian Association of Mathematical Physics Volume 25 (November, 2013), 311 – 320            



316 

 

Criterion for Choosing Among…    Osemeke, Efeizomor  and Azagbaekwue     J of  NAMP 
 
Standardized Studentized Residuals (STR) Plots of the fitted model  

 
Fig 1: STR Floor_Sp Residual Plots                                    Fig 2: STR Presc_Rx Residual Plot 
  

 

Fig 3: STR Shopcntr Residual Plot              Fig 4:STR Predicted(y^) Residual Plot 
 

The scatter plots of Fig 1, Fig 2 and Fig 4 are quite define; thus they have strong and significant effects in the regression 
equation.Fig4 is less well defined , due to heteroscedasticity tendency. 
 
Table 7: Applying Remedies for Assumption Violations of Fig 3:The Output 
Multiple R R2 Adj R2 F change  
0.964 0.929 0.906 39.514  
 
The log transformation of predictor X4 and re fitting the model  
Y = b0 + b1X1 + b2X2 +  b4logX4 + ei yields the output of Table 7 
 In Table 2, the r2 value is 0.700 and adj r2 value is 0.593. Table 7 shows a greater improvement of 0.929 for r2 and 0.906 for 
adj r2. The difference in r2 is 22.9% and adjusted r2 difference is 31.3%. This shows that there was a greater improvement in 
the logarithm transformation of predictor x4. The fitted model was 

 Y^ = 37.826 -0.002X1-0.531X2 + 0LogX4.  The model X3 and X5 was removed from the model because it has no 
significant statistical contribution. The improvement are shown in the graph below 

 
Improved Standardized Studentized Residuals(STR) Plots  
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Fig 5: Improved STR Floor_Sp Residual Plot.  Fig 6 Improved STR Presc_Rx residual Plot 

 

 
Fig 7: Improve STR LogX4 (Shopcntr) Residual Plot 

5.0 Identification of Outliers Using Numerical Test 
 
Table 8: Detecting Outliers as Influential Observations 
 

OBS (Y) (X1) (X2) (X4) Standardized 
residuals(ZRES) 

Studentized 
Residuals(STR) 

Leverages Deleted 
Row  

1 22 4900 9 1 -0.238 -0.276 0.207  
2 19 5800 10 1 -0.302 -0.335 0.136  
3 24 5000 11 1 0.6300 0.703 0.1474  
4 28 4400 12 0 0.6318 0.72 0.181  
5 18 3850 13 0 -2.212 -2.518 0.179 Row 5 
6 21 5300 15 1 0.5930 0.637 0.083  
7 29 4100 20 0 1.8115 1.970 0.105 Row 7 
8 15 4700 22 1 -0.399 -0.42 0.067  
9 12 5600 24 1 -0.324 -0.372 0.190  
10 14 4900 27 1 0.163 0.175 0.08  
11 18 3700 28 0 -0.224 -0.238 0.065  
12 19 3800 31 0 0.520 0.57 0.104  
13 15 2400 36 0 -0.7434 -0.81 0.1064  
14 22 1800 37 0 0.8434 1.030 0.280  
15 13 3100 40 0 -0.2590 -0.279 0.090  
16 16 2300 41 0 0.14872 0.1615 0.1025  
17 8 4400 42 1 0.3484 0.417 0.252  
18 6 3300 42 0 -1.690 -1.899 0.16 Row 18 
19 7 2900 45 1 -0.471 -0.607 0.347  
20 17 2400 46 0 1.171 1.282 0.116  
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Table 8 represents the final fitted model using stepwise estimation. Finally row 5, row 7 and row 18 was removed from the 
model. Table 9, 10, 11 and 12 gives an insight on how outliers was removed from the model 
 
Table 9: Deleting Row 5 
 
Standard Deviation for 
Standardized residuals 

Deleted row 

1.836 5 
 
 Table 8 with 20 observations, has standardized residuals as -2.21171. Row 5 of standardized residuals is outside the range of 
1.836 and -1.836. Row 5 was deleted from the model and the model was left with 19 observations .Re estimated with model 
with 19 observations gives the output of Table 10  
 
Table 10: Regression Output with the Res Estimation of 19 Observations   
Multiple R R2 Adj r2 Std Error of 

Estimates 
P value Durbin 

Watson 
Statistic 

Standard Deviation for 
Standardized Residuals 

Deleted 
Row 

0.902 0.813 0.776 3.0564 0.000 2.306 1.826 18 
  
Row 18 of Table 8 was deleted from the model after res estimation. The Standardized residuals are outside the range of 1.826 
and -1.826 and are regarded as an outlier.  The model is left with 18 observations. 
 
Table 11 Regression Output with the Re Estimation of 18 Observations 
Multiple 
R 

R2 Adj r 2 Std Error of 
Estimates 

F 
value 

P 
value 

Durbin 
Watson 
Statistic 

Standard 
Deviation for 
Standardized 
Residuals 

Deleted 
row 

0.924 0.854 0.823 2.54147 27.310 0.000 2.262 1.814 7 
 
 The Standard deviation for standardized residuals is 1.814. Row 7 was deleted from the mode because the value is outside 
the range of 1.814 and -1.814. You are left with 17 observations. 
 
 Table 12: Regression Output with the Re Estimation of 17 Observations 
Multiple r R 2 Adj r 2 Std Error of 

Estimates 
F value P value Durbin 

Watson 
Statistic 

Standard 
Deviation for 
Standardized 
Residuals 

Deleted 
row 

0.932 0.868 0.838 2.21751 28.540 0.000 2.594 1.802 18 
 
 The fitted model is y^ = 44.195 – 0. 002X1 – 0.541X2 – 4.187X4. Standard deviation for standardized residuals is 1.802. 
Hence no further outlier was detected because no value for standardized residuals is outside the range of 1.802 to -1.802. 
Finally, row 5, row7 and row 18 of Table 8 was deleted from the model. 
Final Residual Plots with the Non Inclusion of Row5, Row7 and Row 18 from The Model 

 

 

Fig 8: ZRES VERSUS FLOOR_SP                   
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Fig 9: ZRES VERSUS PRESC_RX 

 

Fig 10: ZRES VERSUS FITTED                                
 

1.5.1 Alternative Method of Outlier Detention 
The standardized residuals, the studentized residuals and leverage points are another means of       

 outliers detention. 

The most widely used value is 1.96 thus, identifying statistically significant residuals as those with residuals that is 
greater than 1.96. For studentized residuals values, row 5 of -2.518 and row 7 of 1.97 in Table 8 is outside the range of 1.96. 
For standardized residuals,  row 5 of Table 8 is an outlier and should be removed and the model re estimated with 19 
observations.  

Also for studentised residuals, the most widely used is 95 percent confidence (∝ = 0.05).The corresponding t value is 
1.96, thus identifying statistically significant residuals as those residuals greater than 1.96 and less than -1.96.  Attention 
should be on studentized residuals that exceed +2 or -2 and even more concerned about residuals that exceed 3.   

The average value for leverage point is 
6
X , where p is the number of predictors (the number of coefficients plus one for 

the constant). The rule of thumb for situations where p is greater than 10 and the sample size exceeds 50 is to select 

observations with a leverage value greater than twice the average (
�6
X ).When the number of predictors or the sample size is 

less, use of three times the average (
Y6
X ) is suggested. 

Now let’s look at the leverage’s to identify observations that will have potential great influence on regression coefficient 
estimates. Generally, a point with leverage greater than (2k+2)/n should be carefully examined, where k is the number of 
predictors and n is the number of observations.  

 For leverage point, row1, of 0.207, row 14 of 0.280, row 17 of 0.252 and row 19 of 0.347 in Table 8 is a leverage point. 

Using (
�6
X ), no outlier was detected 
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6.0 Conclusion 
 The goal of this paper was to raise awareness of the importance of selecting the best optimal model from the set of 

predictors and presents a simplified introduction to the rationale and fundamental concepts underlying multiple regression 
analysis. It emphasizes that multiple regression analysis can describes and predict the relationship between two or more 
independent variables. Also, multiple regression analysis, which can be used to examine the incremental and total 
explanatory power of many variables, is a great improvement over the sequential analysis approach necessary with univariate 
techniques. Both stepwise estimation and best subset analysis were used to estimate the best optimal regression equation and 
uses the model through studentized residuals to assessed the validation and non-validation of the regression assumptions and 
detect outliers as influential observations. However, we have seen that the uses of best subset analysis always give rises to 
different models as the best optimal models making statistical analysis difficult, biased, and confusing. Using coefficient of 
determination, gave the full models as optimal model. Using Cp statistic	(,- ≤ * + 1) gave many models for inclusion. 
Using adjusted r2 and standard error of the estimates, the model X1, X2 and X4 was chosen for inclusion but when using 
stepwise regression the model X1, X2 and X4 was chosen for inclusion and model X3 and X5 was removed from the model.  

Finally, adjusted r2, standard error of estimates and stepwise estimation method gave us the same result, but the stepwise 
estimation gave us a more precise, understanding,  and more reliable than any of the tools used. Familiarity with the concepts 
presented in this paper will help you better understand the more complex and detailed technical presentation in other 
textbooks. 

We therefore regard the stepwise regression as an indispensable tool for choosing best subsets regression model for 
validation of regression assumption. It helps to choose the best optimal model and also facilitates the job of the analysis  
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