Predicting The Compressive Strengths of Concrete Mixes Made With Washed Local Gravel Using Scheffe's $(4,2)$ Lattice Polynomial

${ }^{1}$ Umeonyiagu Ikechukwu E. and ${ }^{2}$ Onyeyili Innocent \boldsymbol{O}.

${ }^{1}$ Department of Civil Engineering, Anambra State University, Uli.
${ }^{2}$ Department of Civil Engineering, Nnamdi Azikiwe University, Awka.

Abstract

Most structural failures in Nigeria are due to inadequate strength of the construction materials, mainly concrete. This research seeks to use optimisation techniques to overcome the shortcomings of the laboratory trial mixes of determining concrete strengths. Washed local gravel from Abagana, eastern Nigeria, a major source for the construction industry was used. Based on a design matrix and using these aggregates and river sand, sixty concrete cubes of dimensions 150 mm X 150 mm X 150 mm were made, cured and tested according to the procedures in BS 1881:1983. Scheffe's $(4,2)$ lattice polynomial with regression equation was used to develop a mathematical model for predicting the compressive strength characteristics of concretes made with these aggregates. A student's \boldsymbol{t}-test was used to test the model's validity and the analysis of variance (ANOVA) carried out.

Keywords: Concrete, Compressive Strength, Scheffe, Local gravel, Model

1.0 Introduction

1.1 Actual and Pseudo-Components

The requirement of the simplex that $x_{1}+x_{2}+x_{3}+x_{4}=1$ makes it impossible to use the normal mix ratios such as $1: 1: 2$, etc., at a given water/cement ratio. Hence, a transformation of the actual components (normal mix ratios) to meet this condition is unavoidable. The design matrix is shown in Table 1. $\mathrm{x}^{(\mathrm{i})}{ }_{1}, \mathrm{x}^{(\mathrm{i})}{ }_{2}, \mathrm{x}^{(\mathrm{i})}{ }_{3}$ and $\mathrm{x}^{(\mathrm{i})}{ }_{4}$ are the pseudo-components for the ith experimental points. For any actual component Z, the pseudo-component (x) is given by

$$
\begin{equation*}
X=A Z \tag{1}
\end{equation*}
$$

Where A is the inverse of Z matrix and

$$
\begin{equation*}
\mathrm{Z}=\mathrm{B} \mathrm{X}^{\mathrm{T}} \tag{2}
\end{equation*}
$$

Where B is the inverse of Z matrix and X^{T} is the transpose of the matrix.

1.2 The Scheffe's $(4,2)$ Lattice Polynomial

Simplex is the structural representation of the line or planes joining the assumed positions of the constituent materials (atoms) of a mixture [1]. Scheffe [2] considered experiments with mixtures of which the property studied depended on the proportions of the components present but not on the quantity of the mixture. If a mixture has a total of q components and x_{i} be the proportion of the ith component in the mixture such that $x_{i} \geq 0(i=1,2 \ldots q)$, then

$$
\begin{equation*}
x_{1}+x_{2}+x_{3}+\ldots \ldots \ldots \ldots \ldots \ldots+x_{q}=1 \tag{3}
\end{equation*}
$$

Scheffe [2] described mixture properties by reduced polynomials obtainable from eqn (4):

$$
\begin{equation*}
\hat{Y}=b_{0}+\sum b_{i} x_{i}+\sum b_{i j} x_{i} x_{j}+\sum b_{i j k} x_{i} x_{j} x_{k}+\sum b_{i 1},{ }_{i} 2 \ldots i_{n} x_{i 1} x_{i 2} x_{i} n \tag{4}
\end{equation*}
$$

Where ($1 \leq \mathrm{i} \leq \mathrm{q}, 1 \leq \mathrm{i} \leq \mathrm{j} \leq \mathrm{q}, 1 \leq \mathrm{i} \leq \mathrm{k} \leq \mathrm{q})$ respectively and b is constant coefficient.
Multiplying eqn. (3) by b_{0} and multiplying the outcome by x_{1}, x_{2}, x_{3} and x_{4} in turn and substituting into eqn. (4), we have:
$\hat{Y}=b_{0} x_{1}+b_{0} x_{2}+b_{0} x_{3}+b_{0} x_{3}+b_{0} x_{4}+b_{1} x_{1}+b_{2} x_{2}+b_{3} x_{3}+b_{4} x_{4}+b_{12} x_{1} x_{2}+b_{13} x_{1} x_{3}+b_{14} x_{1} x_{4}+b_{23} x_{2} x_{3}+b_{24} x_{2} x_{4}+b_{34} x_{3} x_{4}+b_{11}\left(x_{1}-\right.$
$\left.x_{1} x_{2}-x_{1} x_{3}-x_{1} x_{4}\right)+b_{22}\left(x_{2}-x_{1} x_{2}-x_{2} x_{3}-x_{2} x_{4}\right)+b_{33}\left(x_{3}-x_{1} x_{3}-x_{2} x_{3}-x_{3} x_{4}\right)+b_{44}\left(x_{4}-x_{1} x_{4}-x_{2} x_{4}-x_{3} x_{4}\right)$
Corresponding author: Umeonyiagu Ikechukwu E., E-mail: umeonyiaguikechukwu@yahoo.com, Tel.: +2348068282212
Journal of the Nigerian Association of Mathematical Physics Volume 25 (November, 2013), 287 - 294

Re-arranging eqn. (5), we have

$$
\begin{equation*}
\hat{\mathrm{Y}}=\Sigma \propto_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}+\sum \propto_{\mathrm{ij}} \mathrm{x}_{\mathrm{i}} \mathrm{x}_{\mathrm{j}} \tag{6}
\end{equation*}
$$

where $1 \leq \mathrm{i} \leq \mathrm{q}, 1 \leq \mathrm{i} \leq \mathrm{j} \leq \mathrm{q}, 1 \leq \mathrm{i} \leq \mathrm{j} \leq \mathrm{q}$ respectively and

$$
\begin{equation*}
\propto_{\mathrm{i}}=\mathrm{b}_{0}+\mathrm{b}_{\mathrm{i}}+\mathrm{b}_{\mathrm{ii}} \text { and } \propto_{\mathrm{ij}}=\mathrm{b}_{\mathrm{ij}}+\mathrm{b}_{\mathrm{i} i}+\mathrm{b}_{\mathrm{ii}} \tag{7}
\end{equation*}
$$

Let the response function to the pure components $\left(x_{i}\right)$ be denoted by y_{i} and the response to a $1: 1$ binary mixture of components i and j be $y_{i j}$. From eqn (6), it can be written that

$$
\begin{equation*}
\Sigma \propto_{i} x_{i}=\sum y_{i} x_{i} \tag{8}
\end{equation*}
$$

Where ($\mathrm{i}=1 \ldots 4$)
Evaluating y_{i}, for instance gives:

$$
\begin{equation*}
y_{i}=\propto_{I} \tag{9}
\end{equation*}
$$

Also evaluating $y_{i \mathrm{ij}}$, gives in general the equations of the form

$$
\begin{equation*}
\alpha_{\mathrm{ij}}=4 y_{\mathrm{ij}}-2 \mathrm{y}_{\mathrm{i}}-2 \mathrm{y}_{\mathrm{j}} \tag{10}
\end{equation*}
$$

For the Scheffe's $(4,2)$ lattice polynomial, that is eqn. (6) becomes:
$\hat{Y}=y_{1} x_{1}+y_{2} x_{2}+y_{3} x_{3}+y_{4} x_{4}+\left(4 y_{12}-2 y_{1}-2 y_{2}\right) x_{1} x_{2}+\left(4 y_{13}-2 y_{1}-2 y_{3}\right) x_{1} x_{3}+\left(4 y_{14}-2 y_{1}-2 y_{4}\right) x_{1} x_{4}+\left(4 y_{23}-2 y_{2}-2 y_{3}\right) x_{2}$ $\mathrm{x}_{3}+\left(4 \mathrm{y}_{24}-2 \mathrm{y}_{2}-2 \mathrm{y}_{4}\right) \mathrm{x}_{2} \mathrm{x}_{4}+\left(4 \mathrm{y}_{34}-2 \mathrm{y}_{3}-2 \mathrm{y}_{4}\right) \mathrm{x}_{3} \mathrm{x}_{4}$

1.2 The Student's T-Test

The unbiased estimate of the unknown variance $S_{Y}{ }^{2}$ is given by Biyi [3]

$$
\begin{equation*}
\mathrm{S}_{Y}^{2}=\frac{\sum\left(\mathrm{y}_{\mathrm{i}}-\breve{\mathrm{Y}}\right)^{2}}{\mathrm{n}-1} \tag{12}
\end{equation*}
$$

If $a_{i}=x_{i}\left(2 x_{i}-1\right), a_{i j}=4 x_{i} x_{j}$; for $(1 \leq i \leq q)$ and $(1 \leq i \leq j \leq q)$ respectively.
Then, $\quad \varepsilon=\Sigma \mathrm{a}^{2}{ }_{\mathrm{i}}+\Sigma \mathrm{a}^{2}{ }_{\mathrm{ij}}$
where ε is the error of the predicted values of the response.
The t -test statistic is given by Biyi [3]

$$
\begin{equation*}
\mathrm{t}=\frac{\Delta \mathrm{Y}}{\mathrm{~S}_{\mathrm{Y}}} \frac{\sqrt{\mathrm{n}}}{\sqrt{1+\varepsilon}} \tag{14}
\end{equation*}
$$

where $\Delta \mathrm{Y}=\mathrm{Y}_{0}-\mathrm{Y}_{\mathrm{t}} ; \mathrm{Y}_{0}=$ observed value, $\mathrm{Y}_{\mathrm{t}}=$ theoretical value; $\mathrm{n}=$ number of replicate observations at every point; $\varepsilon=$ as defined in eqn.(13).

2.0 Materials and Method

2.1 Preparation, Curing and Testing of Cube Samples

The aggregates were sampled in accordance with the methods prescribed in BS 812: Part 1:1975 [4]. The test sieves were selected according to BS 410:1986 [5]. The water absorption, the apparent specific gravity and the bulk density of the coarse aggregates were determined following the procedures prescribed in BS 812: Part 2: 1975 [6]. The Los Angeles abrasion test was carried out in accordance with ASTM. Standard C131: 1976 [7]. The sieve analyses of the fine and coarse aggregate samples satisfied BS 882:1992 [8]. The sieving was performed by a sieve shaker. The water used in preparing the experimental samples satisfied the conditions prescribed in BS 3148:1980 [9]. The required concrete specimens were made in threes in accordance with the method specified in BS 1881: 108:1983 [10].These specimens were cured for 28 days in accordance with BS 1881: Part 111: 1983 [11]. The testing was done in accordance with BS 1881: Part 116:1983 [12] using compressive strength testing machine.

2.2 Testing the Fit of the Quadratic Polynomials

The polynomial regression equation developed was tested to see if the model agreed with the actual experimental results. The null hypothesis (that there is no significant difference between the experimentally-observed values and the theoreticallyobtained values) was denoted by H_{0} and the alternative by H_{1}.

3.0 Results and Discussion

3.1 Physical and Mechanical Characterisation of the Aggregates

The maximum aggregate size for the local gravel was 53 mm m and 2 mm for the fine sand. The local gravel had water absorption of 4.55%, moisture content of 53.25%, apparent specific gravity of 1.88 , Los Angeles abrasion value of 60% and bulk density of $1302.7 \mathrm{~kg} / \mathrm{m}^{3}$.

Predicting the Compressive Strengths of... Umeonyiagu and Onyeyili J of NAMP
Table 1 Design Matrix for Experiment based on Scheffe's (4, 2) Lattice Polynomial

Pseudo-components					Actual components			
S/N	X_{1}	X_{2}	x_{3}	X_{4}	z_{1}	Z_{2}	Z_{3}	Z_{4}
1	1	0	0	0	0.6	1	1.5	2
2	0	1	0	0	0.5	1	1	2
3	0	0	1	0	0.55	1	2	5
4	0	0	0	1	0.65	1	3	6
5	1/2	1/2	0	0	0.55	1	1.25	2
6	1/2	0	1/2	0	0.575	1	1.75	3.5
7	1/2	0	0	1/2	0.625	1	2.25	4
8	0	$1 / 2$	1/2	0	0.525	1	1.5	3.5
9	0	1/2	0	1/2	0.575	1	2	4
10	0	0	1/2	1/2	0.6	1	2.5	5.5
Control								
11	1/2	$1 / 4$	$1 / 4$	0	0.5625	1	1.5	2.75
12	1/2	0	$1 / 4$	1/4	0.6	1	2.0	3.75
13	0	1/2	1/4	$1 / 4$	0.55	1	1.75	3.75
14	1/4	$1 / 4$	1/4	1/4	0.575	1	1.875	3.75
15	$3 / 4$	$1 / 4$	0	0	0.575	1	1.375	2
16	$3 / 4$	0	1/4	0	0.5875	1	1.625	2.75
17	3/4	0	0	$1 / 4$	0.6125	1	1.875	3.0
18	0	$3 / 4$	1/4	0	0.5125	1	1.25	2.75
19	0	3/4	0	1/4	0.5375	1	1.5	3.0
20	0	0	$3 / 4$	$1 / 4$	0.5850	1	2.25	5.25

Legend: $z_{1}=$ water/cement ratio; $z_{2}=$ Cement; $z_{3}=$ Fine aggregate; $z_{4}=$ Coarse aggregate

3.2 The Regression Equation for the Compressive Strength Tests Results

Applying the responses (average compressive strengths) in determining the coefficients of the $(4,2)$ lattice polynomial to eqns. (9) and (10), we had $\alpha_{1}=23.46, \alpha_{2}=25.01, \alpha_{3}=14.83, \alpha_{4}=9.41, \alpha_{12}=2.06, \alpha_{13}=-0.78, \alpha_{14}=-4.38, \alpha_{23}=-2.32, \alpha_{24}=-$ 6.44, $\alpha_{34}=9.28$. Thus, from eqn.(11): $\hat{Y}=23.46 x_{1}+25.01 x_{2}+14.83 x_{3}+9.41 x_{4}+2.06 x_{1} x_{2}-0.78 x_{1} x_{3}-4.38 x_{1} x_{4}-2.32 x_{2} x_{3}$ $-6.44 x_{2} x_{4}+9.28 x_{3} x_{4}$. This is the mathematical model for predicting the compressive strength characteristics of the washed local gravel concrete, based on Scheffe's $(4,2)$ polynomial. \hat{Y} represents the compressive strength of the concrete.

Predicting the Compressive Strengths of... Umeonyiagu and Onyeyili J of NAMP
Table 2 Compressive Strength Tests Results and Sample Variances, $S_{i}{ }^{2}$, for Washed
Local - Gravel Concrete, based on Scheffe's $(4,2)$ Simplex Lattices

S/NO	Replication	Responses $\mathbf{y}_{\mathrm{i}}\left(\mathbf{N} / \mathrm{mm}^{2}\right)$	Response symbol	Σy_{i}	$\Sigma y_{i}{ }^{2}$	y	$\left(\Sigma y_{i}\right)^{2}$	$\mathrm{S}_{\mathrm{i}}{ }^{2}$
1	$\begin{aligned} & 1 \mathrm{~A} \\ & 1 \mathrm{~B} \\ & 1 \mathrm{C} \end{aligned}$	$\begin{aligned} & 23.85 \\ & 23.39 \\ & 23.14 \end{aligned}$	y_{1}	70.38	1651.37	23.46	4953.34	0.128
2	$\begin{aligned} & 2 \mathrm{~A} \\ & 2 \mathrm{~B} \\ & 2 \mathrm{C} \\ & \hline \end{aligned}$	$\begin{aligned} & 24.00 \\ & 25.20 \\ & 25.83 \\ & \hline \end{aligned}$	y_{2}	75.03	1878.23	25.01	5629.50	0.865
3	$\begin{aligned} & 3 \mathrm{~A} \\ & 3 \mathrm{~B} \\ & 3 \mathrm{C} \end{aligned}$	$\begin{aligned} & 15.00 \\ & 14.82 \\ & 14.67 \end{aligned}$	y_{3}	44.49	659.84	14.83	1979.36	0.0267
4	$\begin{aligned} & 4 \mathrm{~A} \\ & 4 \mathrm{~B} \\ & 4 \mathrm{C} \end{aligned}$	$\begin{aligned} & 8.95 \\ & 9.85 \\ & 9.43 \end{aligned}$	y_{4}	28.23	266.05	9.41	796.93	0.203
5	$\begin{array}{\|l\|} \hline 5 \mathrm{~A} \\ 5 \mathrm{~B} \\ 5 \mathrm{C} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 25.00 \\ 24.82 \\ 24.43 \\ \hline \end{array}$	y_{12}	74.25	1837.86	24.75	5513.06	0.087
6	$\begin{aligned} & \hline 6 \mathrm{~A} \\ & 6 \mathrm{~B} \\ & 6 \mathrm{C} \\ & \hline \end{aligned}$	$\begin{aligned} & 18.55 \\ & 19.00 \\ & 19.30 \\ & \hline \end{aligned}$	y_{13}	56.85	1077.59	18.95	3231.92	0.142
7	$\begin{aligned} & 7 \mathrm{~A} \\ & 7 \mathrm{~B} \\ & 7 \mathrm{C} \end{aligned}$	$\begin{aligned} & 15.80 \\ & 15.40 \\ & 14.82 \end{aligned}$	y_{14}	46.02	706.43	15.34	2117.84	0.242
8	$\begin{aligned} & 8 \mathrm{~A} \\ & 8 \mathrm{~B} \\ & 8 \mathrm{C} \\ & \hline \end{aligned}$	$\begin{aligned} & 19.56 \\ & 19.90 \\ & 18.56 \end{aligned}$	y_{23}	58.02	1123.08	19.34	3366.32	0.487
9	$\begin{aligned} & 9 \mathrm{~A} \\ & 9 \mathrm{~B} \\ & 9 \mathrm{C} \\ & \hline \end{aligned}$	$\begin{aligned} & 15.20 \\ & 16.00 \\ & 15.60 \\ & \hline \end{aligned}$	y_{24}	46.8	730.4	15.6	2190.24	0.16
10	$\begin{aligned} & 10 \mathrm{~A} \\ & 10 \mathrm{~B} \\ & 10 \mathrm{C} \end{aligned}$	$\begin{aligned} & 14.85 \\ & 15.02 \\ & 13.45 \end{aligned}$	y_{34}	43.32	627.03	14.44	1876.62	0.745

Journal of the Nigerian Association of Mathematical Physics Volume 25 (November, 2013), 287 - 294

Predicting the Compressive Strengths of... Umeonyiagu and Onyeyili J of NAMP

S/NO	Replication	Responses $y_{i}\left(N / \mathrm{mm}^{2}\right.$	Response symbol	Σy_{i}	$\Sigma y_{i}{ }^{2}$	$\check{\mathbf{y}}$	$\left(\Sigma y_{i}\right)^{2}$	$\mathbf{S}_{\mathrm{i}}{ }^{2}$
CONTROL								
11	$\begin{aligned} & 11 \mathrm{~A} \\ & 11 \mathrm{~B} \\ & 11 \mathrm{C} \end{aligned}$	$\begin{aligned} & 21.75 \\ & 22.45 \\ & 21.80 \end{aligned}$	C_{1}	66	1452.31	22	4356	0.155
12	$\begin{aligned} & 12 \mathrm{~A} \\ & 12 \mathrm{~B} \\ & 12 \mathrm{C} \end{aligned}$	$\begin{aligned} & 17.50 \\ & 17.25 \\ & 17.42 \end{aligned}$	C_{2}	52.17	907.27	17.39	2721.71	0.017
13	$\begin{aligned} & 13 \mathrm{~A} \\ & 13 \mathrm{~B} \\ & 13 \mathrm{C} \end{aligned}$	$\begin{aligned} & 18.00 \\ & 18.50 \\ & 17.77 \end{aligned}$	C_{3}	54.27	982.02	18.09	2945.23	0.138
14	$\begin{aligned} & 14 \mathrm{~A} \\ & 14 \mathrm{~B} \\ & 14 \mathrm{C} \\ & \hline \end{aligned}$	$\begin{aligned} & 18.00 \\ & 18.60 \\ & 18.00 \end{aligned}$	C_{4}	54.60	993.96	18.2	2981.16	0.12
15	$\begin{array}{\|l} \hline 15 \mathrm{~A} \\ 15 \mathrm{~B} \\ 15 \mathrm{C} \\ \hline \end{array}$	$\begin{aligned} & 24.75 \\ & 23.95 \\ & 23.60 \\ & \hline \end{aligned}$	C_{5}	72.30	1743.13	24.1	5227.29	0.35
16	$\begin{aligned} & 16 \mathrm{~A} \\ & 16 \mathrm{~B} \\ & 16 \mathrm{C} \end{aligned}$	$\begin{aligned} & 20.80 \\ & 21.32 \\ & 20.88 \end{aligned}$	C_{6}	63	1323.16	21	3969	0.08
17	$\begin{aligned} & 17 \mathrm{~A} \\ & 17 \mathrm{~B} \\ & 17 \mathrm{C} \end{aligned}$	$\begin{aligned} & 19.04 \\ & 19.86 \\ & 18.34 \end{aligned}$	C_{7}	57.24	1093.30	19.08	3276.42	0.58
18	$\begin{array}{\|l\|} \hline 18 \mathrm{~A} \\ 18 \mathrm{~B} \\ 18 \mathrm{C} \\ \hline \end{array}$	$\begin{aligned} & 21.90 \\ & 22.45 \\ & 21.95 \end{aligned}$	C_{8}	66.30	1465.42	22.1	4395.69	0.095
19	$\begin{aligned} & 19 \mathrm{~A} \\ & 19 \mathrm{~B} \\ & 19 \mathrm{C} \end{aligned}$	$\begin{aligned} & 20.00 \\ & 19.46 \\ & 19.31 \end{aligned}$	C_{9}	58.77	1151.57	19.59	3453.91	0.133
20	$\begin{aligned} & 20 \mathrm{~A} \\ & 20 \mathrm{~B} \\ & 20 \mathrm{C} \end{aligned}$	$\begin{aligned} & 15.02 \\ & 14.95 \\ & 15.00 \end{aligned}$	C_{10}	44.97	674.10	14.99	2022.30	0.00

Table 3 Regression Analysis of the Compressive Strength Tests Results SUMMARY OUTPUT

Regression Statistics	
Multiple R	0.989537875
R Square	0.979185205
Adjusted R Square	0.802111141
Standard Error	0.474268237
Observations	10

ANOVA

	$d f$	$S S$	$M S$	F	Significance F
Regression	4	63.48805783	15.87201446	94.0855	$6.82527 \mathrm{E}-05$
Residual	6	1.349582166	0.224930361		
Total	10	64.83764			

	Coefficients	Standard Error	t Stat	P-value	Lower 95\%
Intercept	7.177898089	1.107201131	6.482921564	0.00064	4.468674525
x1	15.96178344	1.240826623	12.86383057	$1.36 \mathrm{E}-05$	12.92559008
x 2	16.79974522	1.325676311	12.67258461	$1.48 \mathrm{E}-05$	13.55593215
x 3	10.08687898	1.534083278	6.575183449	0.000594	6.333112434
x 4	0	0	65535	\#NUM!	0

RESIDUAL OUTPUT

Observation	Predicted Y	Residuals	Standard Residuals
1	21.88044586	0.11955414	0.325435522
2	17.68050955	-0.290509554	-0.790789246
3	18.09949045	-0.009490446	-0.02583372
4	17.89	0.31	0.843843731
5	23.34917197	0.750828025	2.043811364
6	21.67095541	-0.670955414	-1.826392001
7	19.14923567	-0.069235669	-0.188464791
8	22.29942675	-0.199426752	-0.542854885
9	19.77770701	-0.187707006	-0.510952841
10	14.74305732	0.246942675	0.672196866

Legend $\mathrm{df}=$ degree of freedom, $\mathrm{SS}=$ sum of squares, $\mathrm{MS}=$ mean of squares, $\mathrm{F}=\mathrm{F}$-statistic, \#N/A = insignificant value, ANOVA = analysis of variance.

3.3 Regression Analysis of the Compressive Strength Tests Results for the Washed Local Gravel Concrete

Table 3 shows the summary output of the regression analysis of the compressive strength tests results of the washed local gravel concrete concrete. The coefficient of determination, $\mathrm{r}^{2}=0.9788$ shows a very strong relationship between the independent variables ($\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \mathrm{x}_{4}$) and the dependent variable, $\hat{\mathrm{Y}}$. From the F distribution Table [13], F critical is 3.3. Since the F -observed value of 92.41813 is much higher than 3.3 , it is extremely unlikely that an F value this high occurred by chance. The extremely small, significance $\mathrm{F}=7.13188 \mathrm{E}-05$ means that the observed F value of 92.41813 is unlikely to have occurred by chance. From the Student's t distribution Table [13], t critical is 3.69 . The absolute values of the t stat are greater than this t critical. This shows that all the variables used in the regression equation are useful in predicting the response. The P -values being very small means that the experimentally-obtained values and the predicted values of $\hat{\mathrm{Y}}$ have variances that are not significantly different. Thus, the regression equation for the prediction of the compressive strength characteristics of the washed-local gravel concrete is valid.

3.3 Fit of the Polynomial

The polynomial regression equation developed i.e., $\hat{Y}=23.46 x_{1}+25.01 x_{2}+14.83 x_{3}+9.41 x_{4}+2.06 x_{1} x_{2}-0.78 x_{1} x_{3}-4.38 x_{1}$ $x_{4}-2.32 x_{2} x_{3}-6.44 x_{2} x_{4}+9.28 x_{3} x_{4}$, was tested to see if the model agreed with the actual experimental results. There was no significant difference between the experimental and the theoretically expected results. The null hypothesis, H_{0} was therefore satisfied.

3.4 t -value from table

The t-student's test had a significance level, $\alpha=0.05$ and $t_{\alpha /(v e)}=t_{0.005(9)}=3.69$. This was greater than any of the t values calculated in Table 4. Therefore, the regression equation for the washed local gravelconcrete was adequate.

Predicting the Compressive Strengths of... Umeonyiagu and Onyeyili J of NAMP
Table 4 t -Statistic for the controlled Points, washed local gravel concrete compressive test, based on Scheffe's (4, 2) polynomial

Response Symbol	i	j	a_{i}	a_{ij}	$\mathrm{ai}_{\mathrm{i}}{ }^{\text {a }}$	$\mathrm{a}_{\mathrm{ij}}{ }^{2}$	ε	$\begin{gathered} \stackrel{\breve{\mathbf{y}}}{\left(\mathrm{N} / \mathrm{mm}^{2}\right)} \end{gathered}$	$\begin{gathered} \hat{\mathrm{Y}} \\ \left(\mathrm{~N} / \mathrm{mm}^{2}\right) \end{gathered}$	$\Delta \mathrm{Y}$	t
C_{1}	1	2	0	0.5	0	0.25	0.609	22	21.70	0.3	0.635
	1	3	0	0.5	0	0.25					
	1	4	0	0	0	0					
	2	3	-0.125	0.25	0.0156	0.0625					
	2	4	-0.125	0	0.0156	0					
	3	4	-0.125	0	0.0156	0					
	4	-	0	-	0	-					
				Σ	0.0468	0.5625					
							ilarly				
C_{2}	-	-	-	-	-	-	0.484	17.39	17.725	-0.33	-0.781
C_{3}	-	-	-	-	-	-	0.734	18.09	18.05	0.04	0.079
C_{4}	-	-	-	-	-	-	0.593	18.2	18.01	0.19	0.399
C_{5}	-	-	-	-	-	-	0.289	24.1	24.23	-0.13	-0.359
C_{6}	-	-	-	-	-	-	0.859	21	21.15	-0.15	-0.291
C_{7}	-	-	-	-	-	-	0.593	19.08	19.12	-0.04	-0.100
C_{8}	-	-	-	-	-	-	0.483	22.1	22.03	0.07	0.163
C9	-	-	-	-	-	-	0.640	19.59	19.90	-0.31	-0.659
C_{10}	-	-	-	-	-	-	0.469	14.99	15.21	-0.22	-0.530

Legend: $C_{i}=$ response; $a_{i}=x_{i}\left(2 x_{i}-1\right) ; a_{i j}=4 x_{i} x_{j} ; \varepsilon=\Sigma a_{i}^{2}+\sum a_{i j}^{2} ; y=$ experimentally-observed value; $\hat{Y}=$ theoretical value; t $=\mathrm{t}$-test statistic.

Conclusion

The strengths (responses) of the concretes were a function of the proportions of its ingredients: water, cement, fine aggregate and coarse aggregates. Since the predicted strengths by the model were in total agreement with the corresponding experimentally -observed values, the null hypothesis was satisfied. This meant that the model equation was valid.

References

[1] Jackson, N. and Dhir, R. K., Civil Engineering Material, Macmillan ELBS, Hampshire RG21 2XS, England, 1988.
[2] Scheffe, H., Experiments with mixtures, Royal Statistical Society Journal, Ser. B, Vol. 20, 1958, pp340-60.

Predicting the Compressive Strengths of... Umeonyiagu and Onyeyili J of NAMP

[3] Biyi, A., Introductory Statistics, Abiprint \& Pak Ltd., Ibadan, 1975.
[4] British Standard 812: Part 1 Sampling, shape, size and classification. Methods for sampling and testing of mineral aggregates, sands and fillers. British Standards Institution Publication, London, 1975.
[5] British Standard 410 Specification for test sieves. British Standards Institution Publication, London, 1986.
[6] British Standard 812: Part 2 Methods for sampling and testing of mineral aggregates, sands and fillers. Physical properties. British Standards Institution Publication, London, 1975.
[7] ASTM. Standard C 131 Tests for Resistance to Abrasion of Small Size Coarse Aggregate by Use of the Los Angeles Machine. American Society for Testing and Materials Publication, New York, 1976.
[8] British Standard 882 Specification for aggregates from natural sources for concrete. British Standards Institution Publication, London, 1992.
[9] British Standard 3148 Tests for water for making concrete. British Standards Institution Publication, London, 1980.
[10] British Standard 1881: Part 108 Method for making test cubes from fresh concrete. British Standards Institution Publication, London, 1983.
[11] British Standard 1881: Part 111 Method of normal curing of test specimens ($20{ }^{\circ} \mathrm{C}$). British Standards Institution Publication, London, 1983.
[12] British Standard 1881: Part 116. Method for determination of compressive strength. British Standards Institution Publication, London, 1983.
[13] Nwaogazie, I.L., Probability and Statistics for Science and Engineering Practice, University of Port Harcourt Press, Port Harcourt, 2006.

