
147 

 

Journal of the Nigerian Association of Mathematical Physics 
Volume 25 (November, 2013), pp 147 – 156           

© J. of NAMP 
 

On an Adaptive Method for Radial Basis Function Interpolation 
 

Terhemen  Aboiyar  and Tersoo  Luga 
 

Department of Mathematics/Statistics/Computer Science, 
University of Agriculture, PMB 2373, Makurdi, Nigeria 

 
                       Abstract 

 
In this paper, we have used two radial basis functions namely, multiquadrics and 

the thin plate splines to implement the adaptive residual subsampling method in one 
dimension. Two functions with localized features were chosen to establish the efficiency 
of the adaptive method and illustrate the advantages of the adaptive radial basis 
function interpolation over radial basis function interpolation on uniform grids in one 
dimension. The numerical results show that the adaptive radial basis function 
interpolation method performed better with the thin plate splines than the multiquadrics 
and also the adaptive interpolation method yields a better approximation to functions 
that have localized features than radial basis function interpolation on uniform grids.      
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1.0    Introduction 

Radial basis function (RBF) methods are well-known traditional and powerful tools for multivariate interpolation from 
scattered data. According to Buhmann [1], they have nowbecome a viable choice as a method for numerical solution of 
partial differential equations  as shown in [2-4]. Radial basis function methods offer numerous advantages such as no need 
for mesh or triangulation, simple implementation and dimension independence, no need for polygonization for boundaries 
and are preferred to low order methods such as finite difference, finite volumes and finite elements, see Cheng et al [5] and 
Buhmann&Dyn [6] 

According to Driscoll &Heryudono [7], fixed grid radial basis function methods are effective tools for interpolation and 
approximating scattered data problems but they cannot be conveniently used in problems that exhibit high degree of 
localization such as steep gradients, corners and topological changes resulting from nonlinearity, thus the adaptive methods 
are preferred. Many researchers in recent years have incorporated RBF methods in several adaptive schemeswhich have 
produced good results (see Examples in [8-12]). 

Driscoll &Heryudono [7] constructed a new algorithm called adaptive residual subsampling method and applied it to 
interpolation problems, initial value problems and  boundary value problems with localized features. Although the method 
performed well on the tested problems, they only utilized the multiquadric radial basis function which contains a free 
parameter. The choice of the free parameter plays a critical role in the performance of the method. 

In this paper, we will apply the adaptive residual subsampling method of Driscoll &Heryudono [7]to the thin plate spline 
radial basis function which is parameter free and solve some interpolation problems with localized features in one dimension. 
The aim is to compare the adaptive interpolation method with the multiquadric radial basis function with adaptive 
interpolation with thin plate splines and also demonstrate the superiority of the adaptive grid interpolation over interpolation 
on uniform grid. 

The rest of the paper is organized as follows: In Section 2, interpolation by radial basis function is considered. In Section 
3, we report our numerical results and findings by considering two examples and finally a brief conclusion is presented in 
Section 4. 

 
2.0 Methods  

In this section, we will discuss the general theory of radial basis function interpolation.Our description in here is based 
on the paper of Iske [13]  
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2.1 Radial Basis Function 

A radial basis function (RBF) is a real valued function whose value depends only on the distance from the origin, so 
thatΦ��� = ��‖�‖�; or alternatively on the distance from some other point�, called a centre, so thatΦ��, �� = ��‖� − �‖�. 
Any function Φthat satisfies the property Φ��� = ��‖�‖�  is a radial basis function. The norm is usually the Euclidean norm, 
although the use of other norms is also possible. Sums of radial basis functions are typically used to approximate given 
functions. Radial basis functions (RBFs) are means to approximate multivariable functions by linear combinations of terms 
based on a single univariate function. Commonly used types of radial basis functions include: 
i. Gaussian,���, �� = 	����−����	
ii. Linear radial basis function, ���, �� = �� 

iii. Multiquadrics, ���, �� = �1 + ����� 

iv. Inverse	multiquadrics, ���, �� = #�#$�%&�' 

v. Polyharmonic splines, ���� = �( , ) = 1,3,5, … ���� = �( log � , ) = 2,4,6, … 

vi. Thin plate splines (a special polyharmonic splines when) = 2),			���� = �� log �. 

Radial basis function interpolation using scattered data requires a data vector                          2 34 5 = �2��#�, 2����, … , 2��6��7 ∈ ℝ6 of function values sampled from unknown function 2:ℝ; ⟶ ℝ at a scattered 

data set 4 = {�#, ��, …	, �6} ⊂ ℝ; , @ ≥ 1. Scattered interpolation requires computing a suitable interpolant C: ℝ; ⟶ ℝ  

satisfying C 34 5 	= 2 34 5i.e.  CD�EF = 2D�EF, for	1 ≤ I ≤ J																																																															�2.1� 

The radial basis function interpolation scheme works with a fixed radial function�: [0,∞� ⟶ ℝ, and the interpolant C 

in (3.1) is assumed to have the form 

C��� = M�E�DN� − �ENF6
EO# + ����, � ∈ PQ; 																																								�2.2� 

where‖∙‖ is the Euclidean norm onℝ; . PQ;denotes the linear space containing all real valued polynomials in @ 

variables of degree at most S − 1, where S ≡ S��� is said to be the order of the basis function �. 

To evaluate (2.2), we consider two cases; when S = 0 (positive definite radial basis functions)and S > 0 

(conditionally positive radial basis functions). 

2.2 The Linear System Associated with Radial Basis Functions with m=0 
Radial basis functions that have a polynomial part ����, � ∈ PQ; in (2.2) omitted have order S = 0.  Examplesare Gaussians, 
inverse quadrics and inverse multiquadrics. If the polynomial part in �2.2� is omitted then the interpolant�2.2� becomes 

C��� = M�E�DN� − �ENF6
EO# 																																																																		�2.3� 

Weconsider the interpolant (2.3) and the interpolating condition (2.1). The unknown coefficients� = ��#, … , �6�7 ∈ ℝ6 of C 
can be computed from the linear system VW,X . � = 2 34 5 																																																																																											�2.4� 
where 

VW,X =
YZZ
ZZZ
Z[��‖�# − �#‖� ��‖�# − ��‖� ⋯ ��‖�# − �6‖�
��‖�� − �#‖�

⋮
��‖�� − ��‖� …

⋮
��‖�� − �6‖�

⋮
��‖�6 − �#‖� ��‖�6 − ��‖� … ��‖�6 − �6‖�_̂

___
__̀ ; 	� =

YZZ
ZZZ
Z[�#��
⋮
�6 _̂
___
__̀ 	and		2 34 5 =

YZ
ZZZ
ZZ
[2��#�
2����

⋮
2��6�_̂

___
__̀ �2.5�	 
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2.3 The Linear System Associated with Radial Basis Functions with b > 0 
We consider the interpolant�2.2� and the interpolating condition �2.1�. In this case, the interpolant C contains a nontrivial 

polynomial part yielding cadditonal degree of freedom, where c = dS − 1 + @@ e is the dimension of the space PQ;. These 

additional degrees of freedom are usually eliminated by requiring c vanishing moment conditions 

M�E6
EO# �D�EF = 0				for		all� ∈ PQ; 																																																																																											�	2.6�	 

Altogether, this amounts to solving the linear system  

fVW,X PX
PX7 0 g f�@g = YZZ

[52|X
0 _̂_̀ 																																																																																																											�2.7� 

where we let 

   PX = DD�EFjF#kEk6,			|j|lQ ∈ ℝ6×n where @ = �@j�|j|lQ ∈ ℝn    (2.8) 

for the coefficients of the  polynomial part in (3.2).  An example are the polyharmonic splines. 

2.4  Existence and Uniqueness of the Solution ofLinear Systems Associated with RBFs 
According to Iske [13], for the linear system (2.4) associated with positive definite RBFs to exist and be unique, the 
coefficient matrix VW,X must be positive definite.  
 
On the other hand, for the solution of  (2.7) to exist and be unique then  �7VW,X ∙ � > 0, for	all	4and� ∈ ℝ6\{0}withPX7 ∙ � = 0																																																												�2.9� 
2.5 Interpolation Matrices for Multiquadrics and Th in Plate Splines RBFs 
The basis function of the multiquadrics is given by ���� = �1 + ������s� ∈ ℝ, t = 12.																																																																																									�2.10� 
Therefore, the interpolant of the multiquadrics is of the form 

C��� = M�E6
EO# �1 + D�N� − �ENF��s 																																																																																												�2.11� 

Considering �2.11� and the interpolating condition �2.1� with @ = 1 and t=
#	� leads us to the linear system 

YZZ
ZZZ
Z[�1 + ��|�# − �#|�� �1 + ��|�# − ��|�� … �1 + ��|�# − �6|��
�1 + ��|�� − �#|��⋮ �1 + ��|�� − ��|�� …⋮ �1 + ��|�� − �6|��⋮
�1 + ��|�6 − �#|�� �1 + ��|�6 − ��|�� … �1 + ��|�6 − �6|��_̂

___
__̀

YZZ
ZZZ
ZZ[
�#
��⋮
�6 _̂
___
___̀ = 	

YZ
ZZZ
ZZ
[2��#�
2����⋮
2��6�_̂

___
__̀ 										�2.12� 

where the J × Jmatrix on the left hand side of the equation is the interpolation matrix for the multiquadric in one dimension. 

Similarly, the basis function of the thin plate splines is given by  
  ���� = ��log�, � ∈ ℝ 
Therefore, the interpolant of the thin plate splines is given by 

C��� = M�E6
EO# N� − �EN�logN� − �EN + 		����, � ∈ PQ; 																																																			�2.13� 

where���� is a polynomial of degree one since the thin plate splines is a RBF of order S = 2. 

If @ = 1, we have ���� = @u + @#� 
and so   
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C��� = M�E6
EO# v� − �Ev�logv� − �Ev + @u + @#�.		 

The vanishing moment condition is  
 

M�E6
EO# �D�EF = M�E6

EO# D@u + @#�EF = 0				 
which means that 

M�E6
EO# �D�EF = @u��# + �� +⋯+�6� + @#��#�# + ���� +⋯+ �6�6� = 0 

but @uand	@# ≠ 0, therefore 
 �# + �� +⋯+�6 = 0, and	 
 �#�# + ���� +⋯+ �6�6 = 0. 
Therefore, the linear system associated with the thin splines for @=1 is given by  

YZ
ZZ
ZZ
ZZ
[|�# − �#|�log|�# − �#| |�# − ��|�log|�# − ��| ⋯ |�# − �6|�log|�# − �6| 1 �#
|�� − �#|�log|�� − �#| |�� − ��|�log|�� − ��| ⋯ |�� − �6|�log|�� − �6| 1 ��⋮|�6 − �#|�log|�6 − �#|1�#

⋮|�6 − �#|�log|�6 − �#|1��
∙∙∙⋯

⋮|�6 − �#|�log|�6 − �#|1�6
⋮1 ⋮�60 0
0 0 _̂_

__
__
_̀

YZ
ZZ
ZZ
ZZ
[�#
��⋮�6@u
@# _̂

__
__
__̀ =

YZZ
ZZZ
ZZZ
[2��#�
2����∙∙2��6�0
0 _̂__

___
__̀
	�2.14� 

The �J + 2� × �J + 2�  matrix on the left hand side of �2.14� is the interpolation matrix for the thin plate splines in one 
dimension. 
2.6 Residual Subsampling Method for One Dimensional Interpolation Problems 
Below is a description of the residual subsampling method algorithm developed by Driscoll &Heryudono [7]for one 
dimensional  interpolation problems. 
 
Algorithm 2.1 �i�  Generate an initial discretization using J equally spaced points and find the RBF approximation of the function. �ii�  Compute the interpolation error at points halfway between the nodes. 
(iii)  Points at which the error exceeds a threshold x& are to become centres, and centres that lie between two points 

whose error is below a small threshold xy  are removed. �iv� The two end points are always left intact. �v� The adaptive process follows the solve-estimate-refine/coarsen until a stopping criterion is satisfied. 
 
3. Results and Discussion 
In this section, we present the numerical results and discuss our findings obtained from MATLAB programmes in one 
dimension. To this end, we consider two functions 2#��� = tanh	�60� − 0.01�and 2���� = |� + 0.04|. 
We will interpolate all the functions on the interval [−1,1z. All the programmes are run in MATLAB 7.14 on Windows XP 
operating system. We choose our refine threshold to be x& = 2 × 10{|and our coarsen threshold to be xy = 1 × 10{}. We 
take the values of the shape parameter to be � = 0.25 and � = 0.50 when interpolating with the multiquadrics. On the other 
hand, the thin plate splines does not have a shape parameter. The adaptive radial basis function method is demonstrated by 
testing two functions 2#���and2���� using two radial basis functions:multiquadrics and the thin plate splines. In each case, 
we record the number of iterations  ~�, number of centres  �, number of centres to be added  �&, number of centres to be 
removed  �yand the maximum error of interpolation on both the adaptive and uniform grids denoted by ‖∙‖∞,� and ‖∙‖∞,� 
respectively. Errors from uniform grids are provided so that they can be compared with errors on the adaptive grid to test the 
efficiency of the adaptive algorithm. 
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Example 1 
We consider the function 2#���. The results are recorded in Tables 1-3 and the corresponding graphs in Figures 1-6. 
 
Table 1: Adaptive interpolation with multiquadricsperformed on 2#���for � = 0.25. ~���&�y‖∙‖∞,�‖∙‖∞,� 

1                11                10                 0                    7.5308 × 10{#7.5308 × 10{# 
2                21                20                 0                    5.7700 × 10{#5.7700 × 10{# 
3                41                 40                0                    3.2684 × 10{#3.2684 × 10{# 
4                81                 41                0                   	8.2495 × 10{�	8.2495 × 10{� 
5              122                 30               26                   3.7189 × 10{�7.7969 × 10{� 
6              126                  4               45                  	1.2531 × 10{�	6.4877 × 10{� 
7                85                   4                 0                    1.0287 × 10{�	7.0909 × 10{� 
8                89                   6                 0                    3.2040 × 10{�	6.1154 × 10{� 
9                95                   4                 0                    2.8030 × 10{�	4.8639 × 10{� 
10             99                   8                  0                    5.6683 × 10{|	4.1791 × 10{� 
11           107                   0                 0                    9.6826 × 10{�	3.0720 × 10{� 

 

 
Figure1: Plot of 2#���with final node  Figure2: Plot of 2#���with final node   
distribution on the adapted grid using distribution on uniform grid using 
multiquadrics for � = 0.25.   multiquadrics for � = 0.25. 
 

 

Table 2 :Adaptive interpolation with multiquadrics performed on 2#���  for� = 0.50 

~���&�y‖∙‖∞,�‖∙‖∞,� 
1                11                10                 0                    7.5411 × 10{#7.5411 × 10{# 
2                21                20                 0                    5.8178 × 10{#5.8178 × 10{# 
3                41                28                 0                    3.3305 × 10{#3.3305 × 10{# 
4                69                26                 6                   	8.7240 × 10{�1.3324 × 10{# 
5                89                21                22                  4.5743 × 10{�6.5325 × 10{� 
6               88                    1               28                  	1.4362 × 10{�3.0294 × 10{� 
7               61                  14                0                    4.7110 × 10{�	1.7526 × 10{# 
8               75                   0                 7                    1.9772 × 10{|	1.0793 × 10{# 
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Figure 3: Plot of 2#���with final node  Figure 4: Plot of 2#���with final node 
distribution on the adapted grid using  distribution on uniform grid using 
multiquadrics for � = 0.50.    multiquadrics for � = 0.50. 
 
Table 3: Adaptive interpolation with thin Plate splines performed on 2#��� ~���&�y‖∙‖∞,�‖∙‖∞,� 

1                11                10                 0                    7.7744 × 10{#7.7744 × 10{# 
2                21                18                 0                    6.1737 × 10{#6.1737 × 10{# 
3                39                26                 0                    3.7889 × 10{#3.9866 × 10{# 
4                65                24                 0                   	1.2494 × 10{#	1.9674 × 10{# 
5                89                25                 0                   	1.5759 × 10{�9.9512 × 10{� 
6              144                26                 0                  	1.5247 × 10{�		2.1254 × 10{� 
7              140                15                 0                   1.7443 × 10{�		1.7058 × 10{� 
8              155                 8                  0                   2.2736 × 10{|		1.8041 × 10{� 
9              163                 4                  0                1.8612 × 10{|		1.5063 × 10{� 
10            167                 1                  0                 	1.8696 × 10{|		1.3760 × 10{� 
11      168                  0                  0                  1.8696 × 10{|		1.1805 × 10{� 

 
Figure 5:Plot of 2#���with final   Figure 6: Plot of 2#���with final 
node distribution on the adapted   node distribution  on uniform  
grid using thin plate splines.    grid using thin plate splines. 
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 2#���has two sharp corner features. We see in Tables 1-3 where the numerical results are recorded that the adaptive 
interpolation with the multiquadrics and thin plate splines   yield good results and show the superiority of the results on 
adapted grids over that on uniform grids. For example, in Tables 1 and 2, the multiquadrics converged in 11 and 8 iterations 
for the values of � = 0.25	and � = 0.50 and we end up with 107 and 75 centres respectively. The errors on the adapted and 
uniform grids at the end of the iterations for � = 0.25	are 9.6826 × 10{� and 3.0720 × 10{� respectively, while for � = 0.50, we have 1.9972 × 10{| and 1.0793 × 10{# respectively.  Likewise, in Table 3, the adaptive interpolation with the 
thin plate splines converged in 11 iterations with the final error on adapted and uniform grids as	1.8696 × 10{| and 1.1805 × 10{� respectively. Figures 1, 3 and 5 show how nodes are concentrated at the two localized features and 
consequently making the error on adaptive grids far less than error on the uniform grids.  

Example 2 
We now consider the function 2����. The results are recorded in Tables 4-6 and the corresponding graphs in Figures 7-10. 
 
Table 4: Adaptive interpolation with multiquadrics performed on 2���� for � = 0.25. ~���&�y‖∙‖∞,�‖∙‖∞,� 

1                11                10                 0                    3.7599 × 10{�		3.7599 × 10{� 

2                21                20                 0                    3.0429 × 10{�3.0429 × 10{� 

3                41                30                 0                    9.3860 × 10{�9.3860 × 10{� 

4                71                14                 0                   	7.6060 × 10{�8.6926 × 10{� 

5                85                42                 0                   	2.7473 × 10{�6.4279 × 10{� 

6                127              19                 7                    1.9018 × 10{�5.0687 × 10{� 

7                139              34                12                8.2866 × 10{�3.1699 × 10{� 

8                161               9                  24                 	9.0104 × 10{�2.3465 × 10{� 

9                146              85                 0                    4.7550 × 10u4.1964 × 10{� 

10              231               7                 53                   1.3225 × 10{�	2.6456 × 10{� 

 
TABLE 5: Adaptive interpolation with multiquadrics performed 2���� for � = 0.50. ~���&�y‖∙‖∞,�‖∙‖∞,� 

1                11                10                 0                    3.7843 × 10{�3.7843 × 10{� 

2                21                18                 0                    3.0780 × 10{�3.0780 × 10{� 

3                39                17                 0                    9.4590 × 10{�1.1614 × 10{� 

4                56                13                 0                    7.6950 × 10{�	1.1193 × 10{� 

5                69                13                 9                   	2.3647 × 10{�8.6072 × 10{� 

6                73                  9                19                  	1.9238 × 10{�		8.8347 × 10{� 

7                63                11                 0                   	5.9121 × 10{�		7.1182 × 10{� 

8                74                 5                 11                   4.8094 × 10{�		4.8000 × 10{� 

9                68                17                 0                   3.1726 × 10{�			4.6202 × 10{� 

10             85                  3                  7                			1.2085 × 10{�			6.4961 × 10{� 

11             81                15                 0                  		1.9537 × 10{�			7.6950 × 10{� 

12             96                  1                 2                  		2.5136 × 10{|			6.4800 × 10{� 

13             95                  0                 1                  		2.5362 × 10{|			3.2785 × 10{� 
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Figure 7: Plot of 2����with final   Figure 8: Plot of 2����with final  
node distribution on the adapted    node distribution on uniform grid 
grid using multiquadrics  for � = 0.50.  using multiquadric RBF for � = 0.50. 
 

Table 6: Adaptive interpolation with thin Plate splines Performed on  2���� ~���&�y‖∙‖∞,�‖∙‖∞,� 

1                11                10                 0                    4.2796 × 10{�4.2796 × 10{� 

2                21                17                 0                    3.4922 × 10{�3.4922 × 10{� 

3                38                14                 0                    1.0694 × 10{�1.3521 × 10{� 

4                52                11                 0                    8.7293 × 10{�	1.4371 × 10{� 

5                63                 8                  0                   	2.6734 × 10{�8.0689 × 10{� 

6                71                 8                  0                    2.1823 × 10{�		9.9764 × 10{� 

7                79                 4                  0                   	6.6834 × 10{�		9.2479 × 10{� 

8                83                 3                  0                   	5.4558 × 10{�		8.1003 × 10{� 

9                86                 2                  0                   1.6709 × 10{�			5.0322 × 10{� 

10             88                 2                  0                				1.3638 × 10{�			5.7502 × 10{� 

11             90                 1                  0                  		4.1785 × 10{|			6.3425 × 10{� 

12             91                 0                  0                  		3.8421 × 10{|			4.7526 × 10{� 
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            Figure 9: Plot of 2����with final                  Figure 10: Plot of 2����with final 
            node distribution on the adaptive                  node distribution on uniform 
            gridusing the thin plate splines.                 grid using the thin plate splines. 
 
The results for 2����is recorded in Tables 4 - 6. Figures 7 and 9 show that 2���� has one sharp localized feature and the 
adaptive algorithm  allocated more centres there. In our numerical experiments for 2����, we observed from Table 4 that the 
adaptive algorithm did not converge with multiquadrics for � = 0.25.	 Once again, Tables 5 and 6 show the advantage of 
interpolation using the adaptive algorithm over interpolation on uniform grid for functions with sharp gradients or localized 
features. We see that the errors on the adapted grid just like 2#��� are smaller than errors on the uniform grid. The adaptive 
interpolation with multiquadrics for the value of � = 0.50		yields the error  2.5362 × 10{| in 13 iterations with a total of 95 
centres on the adapted grid while on the uniform grid of 95 centres, the error is	3.2785 × 10{�. Similarly, adaptive 
interpolation with the thin plate splines gives the errors on the adapted and uniform grids of 91 centres as  3.8421 × 10{5 and 
4.7526 × 10{3 respectively. 

Table7: Comparison of Errors on Adapted and Uniform Grids for 2#��� and  2����  at the Final Iteration. 

 Multiquadric RBF Thin Plate Splines RBF 
Final  Final   

Function � It N ‖∙‖�,� ‖∙‖�,� It N ‖∙‖�,� ‖∙‖�,� 2#��� 0.25 11 107 9.6826 × 10{6 30720 × 10{2     2#��� 0.50 8 75 1.9772 × 10{5 1.0793 × 10{1     2#��� ε-free     11 168 1.8696 × 10{5 1.1805 × 10{1 2���� 0.25 10 231 1.3325 × 10{4 ∗ 2.6456 × 10{3 ∗     2���� 0.50 13 95 2.5362 × 10{5 3.2785 × 10{3     2���� ε-free     12 91 3.8421 × 10{5 4.7526 × 10{3 
KEY: * Error message after this iteration: Matrix is close to singular or badly scaled, result may be inaccurate. 
 
Once again, we use Table 7 to compare the adaptive interpolation with multiquadrics and the thin plate splines. We observed 
that both yield small maximum errors at the end of each iteration for the two functions. We also noted that the adaptive 
interpolation errors at the end of each iteration for the thin plate splines and the multiquadrics for the value of ε = 0.50 were 
almost the same.  In summary, from Table 7 and Figures 1, 3, 5, 7 and 9 show that the adaptive algorithm performed well 
with the multiquadrics and the thin plate splines for 2#���  and 2���� that contain sharp corner features. Table 4 shows that 
the adaptive algorithm did not yield the desired results with the multiquadricsfor �	= 0.25, thus the thin plate splines which is 
parameter free yielded the best results. The thin plat splines require fewer iterations for 2���� 
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4. 0 Conclusion 
We implemented an adaptive radial basis functions interpolation algorithm developed in[7] known as residual subsampling 
method and applied it to the thin plate splines. Our results show that the adaptive radial basis function interpolation yields a 
better approximation to functions with localized features than interpolation on uniform grid. Also,  the thin plate splines 
which is parameter free yielded better results compared to the multiquadrics which contains a shape parameter and its 
accuracy depends on the shape parameter. Nevertheless, the interpolation matrix of the thin plate splines needs more 
computational efforts than that of the multiquadrics and hence its implementation may not be trivial especially in higher 
dimensions. 

 

References 
[1]Buhmann, M. D. (2003). Radial Basis Functions: Theory and Implementations, Cambridge University Press, Cambridge. 
[2]Kansa, E. J. (1990). Multiquadrics – A Scattered Data Approximation Scheme with Applications to Computational Fluid 

Dynamics- II: solution to Parabolic and Elliptic Partial Differential Equations, Computers and  Mathematics with 
Applications  Vol. 19, No. 8-9, pp. 147-161. 

[3]Franke, R. and Schaback, R. (1998). Solving Partial Differential Equations by Collocation using Radial Basis Functions, 
Applied  Mathematics and  Computation,  Vol.1, No. 2,     pp. 73 – 82. 

[4]Larsson, E. and Fornberg, B. (2003). A Numerical Study of Some Radial Basis Function Based Solution Methods For 
Elliptic PDEs, Computational Mathematics with Applications, Vol. 46, No. 5-6, pp. 891-902. 

[5]Cheng, A. H.- D., Golberg, E.  Kansa, E. J. and Zammito, G. (2003). Exponential Convergence and ℎ −� Multiquadric 
Collection Method for Partial Differential Equations, NumericalMethods Partial Differential Equations, Vol. 19, No. 5, 
pp. 571 – 594. 

[6]Buhmann, M. D. and Dyn, N. (1993). Spectral Convergence of Multiquadric Interpolation, Proceedings of the Edinburgh 
Mathematical Society, Vol.2,  No. 36,  pp. 319 – 333. 

[7]Driscoll, T. A. and Heryudono, A. R. H. (2007). Adaptive Residual Subsampling Methods for Radial Basis Function 
Interpolation and Collocation Problems, Computer with Mathematics and Applications, Vol. 53, pp. 927-939. 

[8]Behrens, J. and Iske, A.  (2002). Grid-free Adaptive Semi-Lagrangian Advection Using Radial Basis Function, 
Computational Mathematics with Applications, Vol.3, No.43,  pp. 319-327. 

[9]Behrens, J., Iske, A. and Kaser, M. (2003). Adaptive Meshfree Method of Backward Characteristics for Nonlinear 
Transport Equations: In Meshfree Methods for Partial Differential Equations, (Bonn, 2001), in: Lecture Notes in 
Computer Science and Engineering, Springer Berlin, Vol. 26, pp. 21 – 36. 

[10]Munoz-Gomez, J. A. (2006). Adaptive Node Refinement Collocation Method for Partial Differential Equations, 
Computer Science, pp. 70-80. 

[11]Schaback, R. and Wendland, H. (2000). Adaptive Greedy Algorithm Techniques for Approximate Solution of Large RBF 
Systems, Numerical Algorithms, Vol.3, No.32,           pp. 239 – 254. 

[12]Hon, Y. C., Schaback, R. and Zhou, X. (2003). An Adaptive Greedy Algorithm for Solving Large RBF Collocation 
 Problems, Numerical Algorithms, Vol.1, No.32   pp. 13 – 25. 

[13]Iske, A. (2003). Radial Basis Functions: Basics Advanced Topics and Meshfree Methods for Transport Problems, 
RendicotidelSeminarioMatematica, Vol. 61 No. 3, pp. 247 – 286. 

 
 

 
 
 
 
 
 
 
 
 
 
 

Journal of the Nigerian Association of Mathematical Physics Volume 25 (November, 2013), 147 – 156            
 

 


