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Abstract

In this paper, we have used two radial basis functions namely, multiquadrics and
the thin plate splines to implement the adaptive residual subsampling method in one
dimension. Two functions with localized features were chosen to establish the efficiency
of the adaptive method and illustrate the advantages of the adaptive radial basis
function interpolation over radial basis function interpolation on uniform grids in one
dimension. The numerical results show that the adaptive radial basis function
interpolation method performed better with the thin plate splines than the multiquadrics
and also the adaptive interpolation method yields a better approximation to functions
that have localized features than radial basis function interpolation on uniform grids.
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1.0 Introduction

Radial basis function (RBF) methods are well-kndvaditional and powerful tools for multivariate énpolation from
scattered data. According to Buhmann [1], they hasebecome a viable choice as a method for numesmation of
partial differential equations as shown in [2-Rhdial basis function methods offer numerous adged such as no need
for mesh or triangulation, simple implementatiord aimension independence, no need for polygoniz&itio boundaries
and are preferred to low order methods such atfdifference, finite volumes and finite elemerstse Chengt al [5] and
Buhmann&Dyn [6]

According to Driscoll &Heryudono [7], fixed grid d&al basis function methods are effective toolsifderpolation and
approximating scattered data problems but they atabe conveniently used in problems that exhibghhdegree of
localization such as steep gradients, corners @poldgical changes resulting from nonlinearity,shhe adaptive methods
are preferred. Many researchers in recent years hmorporated RBF methods in several adaptive sebhich have
produced good results (see Examples in [8-12]).

Driscoll &Heryudono [7] constructed a new algorittoalled adaptive residual subsampling method amtieapit to
interpolation problems, initial value problems amundary value problems with localized featurebh@dugh the method
performed well on the tested problems, they onilizat the multiquadric radial basis function whiclntains a free
parameter. The choice of the free parameter playgieal role in the performance of the method.

In this paper, we will apply the adaptive residsisthsampling method of Driscoll &Heryudono [7]to thén plate spline
radial basis function which is parameter free avldessome interpolation problems with localizedtfieas in one dimension.
The aim is to compare the adaptive interpolatiortho@ with the multiquadric radial basis functionthiadaptive
interpolation with thin plate splines and also destoate the superiority of the adaptive grid intdation over interpolation
on uniform grid.

The rest of the paper is organized as follows:doti®n 2, interpolation by radial basis functiorc@sidered. In Section
3, we report our numerical results and findingscbpsidering two examples and finally a brief cos@u is presented in
Section 4.

2.0 Methods
In this section, we will discuss the general thegiryadial basis function interpolation.Our destidp in here is based
on the paper of Iske [13]
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2.1 Radial Basis Function

A radial basis function (RBF) is a real valued fiime whose value depends only on the distance fiteemorigin, so
thatd(x) = ¢(||x]|); or alternatively on the distance from some oth@ntc, called a centre, so thfx,c) = ¢(||x — c|]).
Any function dthat satisfies the properdy(x) = ¢(||x||) is a radial basis function. The norm is usudily Euclidean norm,
although the use of other norms is also possiblensSof radial basis functions are typically usedapproximate given
functions. Radial basis functions (RBFs) are mearepproximate multivariable functions by lineantdmnations of terms
based on a single univariate function. Commonhdugpes of radial basis functions include:
i. Gaussian,¢(r, &) = exp(—er)?
ii. Linear radial basis function, ¢ (r, &) = er

iii. Multiquadrics, ¢ (r, &) = /1 + (er)?

1

iv. Inverse multiquadrics, ¢p(r, &) = e

1+(er)?2
V. Polyharmonic splines, ¢(r) = r*, k = 1,3,5, ...
o) =r*logr,k =246, ..
vi. Thin plate splines (a special polyharmonic splines whenk = 2), ¢(r) = r?logr.

Radial basis function interpolation using scattered data requires a data vector
f |X = (f(xy), f(x3), ..., f(x,))T € R™ of function values sampled from unknown function f: R* — R at a scattered
data set X = {x, X5, ... ,x,} € R% d > 1. Scattered interpolation requires computing a suitable interpolant s: R* — R
satisfying s |X =f |X1.e.

s(x]-) = f(x]-), forl<j<n (2.1)

The radial basis function interpolation scheme works with a fixed radial functiong: [0,0) — R, and the interpolant s

in (3.1) is assumed to have the form
n

s(x) = z chb(”x - xj||) + p(x), p € P4 (2.2)
j=1
where||-|| is the Euclidean norm onR%. PZdenotes the linear space containing all real valued polynomials in d
variables of degree at most m — 1, where m = m(¢) is said to be the order of the basis function ¢.

To evaluate (2.2), we consider two cases; when m = 0 (positive definite radial basis functions)and m > 0
(conditionally positive radial basis functions).

2.2 The Linear System Associated with Radial Basis Functions with m=0
Radial basis functions that have a polynomial p&éxt),p € P4in (2.2) omitted have orden = 0. Examplesare Gaussians,
inverse quadrics and inverse multiquadrics. Ifgbl/nomial part in(2.2) is omitted then the interpolg2t2) becomes

n

509 = Y ga(lx -5 (2.3)
j=1
Weconsider the interpolant (2.3) and the interpgatondition (2.1). The unknown coefficieats: (cy, ..., c,)T € R" of s
can be computed from the linear system

Agx.c=f | ¥ (2.4)
where
s =) Ul —xal) - dllxy — xl)T €17 [f ()]
_ _ L —x, e £Ox2)
hy bl — 1D p(llxz — 2,1 Pl = x| _ ana 1], = 23
lo(lx, — 20D dUlxe — 221D o dUlxy — 2] ¢ e
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2.3 The Linear System Associated with Radial Baskunctions withm > 0
We consider the interpolai®2) and the interpolating conditiof2.1). In this case, the interpolantcontains a nontrivial
polynomial part yieldingzadditonal degree of freedom, where= (m _; + d) is the dimension of the spa®g. These
additional degrees of freedom are usually elimishdtg requiringg vanishing moment conditions
n
z ¢ip(xj) =0 for allp € P2 (2.6)
j=1
Altogether, this amounts to solving the linear eyst
A¢:X PX ¢ le
= 2.7)
Py 0llg l 0 J
where we let
Pe = ((5)) s n, jorem € R Whered = (dg)jei<m € R (2.8)

for the coefficients of the polynomial part inZB. An example are the polyharmonic splines.

2.4 Existence and Uniqueness of the Solution ofléar Systems Associated with RBFs
According to Iske [13], for the linear system (2&9sociated with positive definite RBFs to existl &re unique, the
coefficient matrix44 y must be positive definite.

On the other hand, for the solution of (2.7) tseand be unique then

c"Apx-c>0,  forall Xandc € R"\{0O}withPy ¢ =0 2.9
2.5 Interpolation Matrices for Multiquadrics and Thin Plate Splines RBFs
The basis function of the multiquadrics is given by
1
o) =0+ ()H)'reRv= > (2.10)
Therefore, the interpolant of the multiquadricsfishe form
n
2
s(x) = Z ¢(1+ (s”x - xj”) )Y (211)
j=1
Considering(2.11) and the interpolating conditigi2.1) withd = 1 andv=l2 leads us to the linear system
_ €17 _ -
T+ Gl —xD? T+ G —xD? = T+l = %) fx)
Ji+ (3|3f2 —x)? Y1+ (elx, - ) A (€|3fz —xnD?{le, | = [flx2) (2.12)
V14 Clxn — 2D T+ (el — 2,02 .. V14 (Elxn — 2,2 e, Lf(xy)l]

where ther x nmatrix on the left hand side of the equation isittterpolation matrix for the multiquadric in onavégnsion.

Similarly, the basis function of the thin plateispk is given by
¢(r) =r%logr, r€R
Therefore, the interpolant of the thin plate s@iregiven by

2
s(x) = Z G [|lx - x]-” log||x — x]-|| + p(x), p € P2 (2.13)
j=1
wherep(x) is a polynomial of degree one since the thin pdatees is a RBF of orden = 2.

If d =1, we have
p(x) =dy+dix
and so
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n

s(x) = Z ¢ | — xj|zlog|x — xj| +dy + d;x.

j=1
The vanishing moment condition is

n

n
Z G p(x]-) = Z o (dg + dlx]-) =0
j=1 j=1
which means that
n

Z o p(x]-) =do(c; +cy+ - 4cy) +di(crxy Hcpxy + -+ cpxy,) =0

j=1
butdyand d, # 0, therefore

¢ +c, +-+c, =0,and

C1X1 + Cxy + -+ cpxy, = 0.
Therefore, the linear system associated with thregplines ford=1 is given by

1) = x;[Plogloxy —x;| Iy — x5 |?loglxy — x5 Iy — xpl?logly — x| 1 X7 [£ (1)
|z — xllzlf)glxz —x| - lezl?glxz — x| X — xn|21:0g|x2 —xal 1 X c, f(xy)
) ) ) P = . 2.14
o = x1[Ploglxy = x| [ =i Plogly =2y —xiPloghe, —xml 1 - |G
: S | e I e
1 1 : 1 0 0
X1 X, Xn 0 0]ld,!

L m | O i
The (n + 2) X (n + 2) matrix on the left hand side ¢2.14) is the interpolation matrix for the thin plate ispk in one
dimension.
2.6 Residual Subsampling Method for One Dimensionahterpolation Problems
Below is a description of the residual subsamplingthod algorithm developed by Driscoll &Heryudondfér one
dimensional interpolation problems.

Algorithm 2.1

() Generate an initial discretization usimgqually spaced points and find the RBF approxiomadif the function.

(ii) Compute the interpolation error at points halfieayween the nodes.

(iii) Points at which the error exceeds a threslthldire to become centres, and centres that lie betivea points

whose error is below a small threshé]d are removed.
(iv) The two end points are always left intact.
W) The adaptive process follows the solve-estimdiaaioarsen until a stopping criterion is satidfie

3. Results and Discussion

In this section, we present the numerical resutid discuss our findings obtained from MATLAB prognmaes in one
dimension. To this end, we consider two functions

f1(x) = tanh (60x — 0.01)and

fo(x) = |x + 0.04/.

We will interpolate all the functions on the intahy—1,1]. All the programmes are run in MATLAB 7.14 on Wawis XP
operating system. We choose our refine thresholoet®. = 2 x 10~5and our coarsen threshold to fie= 1 x 1078, We
take the values of the shape parameter to be).25 ande = 0.50 when interpolating with the multiquadrics. On thiteer
hand, the thin plate splines does not have a spamameter. The adaptive radial basis function ntethalemonstrated by
testing two functiond; (x)andf,(x) using two radial basis functions:multiquadrics #hel thin plate splines. In each case,
we record the number of iteration&, number of centresV, number of centres to be addéd., number of centres to be
removed N.and the maximum error of interpolation on both #u@ptive and uniform grids denoted pyl.,, and|l-|l.
respectively. Errors from uniform grids are prowdd® that they can be compared with errors ondagtave grid to test the
efficiency of the adaptive algorithm.
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Example 1
We consider the functiofi (x). The results are recorded in Tables 1-3 and thesponding graphs in Figures 1-6.

Table 1: Adaptive interpolation with multiquadricsperformed f; (x)for € = 0.25.
IENN; N[ llos,a |l oo

1 11 10 0 7.5308 x 10717.5308 x 1071
2 21 20 0 5.7700 x 10715.7700 x 107!
3 41 40 0 3.2684 x 10713.2684 x 1071
4 81 41 0 8.2495 x 1072 8.2495 x 1072
5 122 30 26 3.7189 x 10737.7969 x 1073
6 126 4 45 1.2531x 107* 6.4877 x 1073
7 85 4 0 1.0287 x 1072 7.0909 x 1072
8 89 6 0 3.2040 x 1073 6.1154 X 1072
9 95 4 0 2.8030 X 107* 4.8639 x 1072
10 99 8 0 5.6683 x 1075 4.1791 X 1072
11 107 0 0 9.6826 X 107° 3.0720 x 1072

N=107, Max error = 9.6826e-006.

1 T T g cap—o—aor

N=107, Max error = 3.0720e-002.

0.8r
0.8

0.61 06l

0.4F 04l

0.21 o2l

@0 0000 0 000 0 0 0 0 0 000 o @m o =

f,(x)
X

0.2 1 025

041 b 045

06r E 06+

08r 1 0.8F

-1 L L I 4 L L L L L 1 k 4 L L L L L L

1 08 06 -04 02 0 02 04 06 08 1 1 08 06 04 02 0 02 04 06 08 1

X X

Figurel: Plot of f; (x)with final node Figure2: Plot of f; (x)with final node
distribution on the adapted grid using distributamuniform grid using
multiquadrics fore = 0.25. multiquadrics foe = 0.25.

Table 2 :Adaptive interpolation with multiquadrics performedf; (x) fore = 0.50

IENN, N |l 011l 20

1 11 10 0 7.5411 x 10717.5411 x 107!
2 21 20 0 5.8178 x 10715.8178 x 107!
3 41 28 0 3.3305 x 107*3.3305 x 107!
4 69 26 6 8.7240 x 10721.3324 x 107!
5 89 21 22 4.5743 x 10736.5325 x 1072

6 88 1 28 1.4362 x 107*3.0294 x 1072
7 61 14 0 47110 x 107* 1.7526 x 107!
8 75 0 7 1.9772 x 107° 1.0793 x 1071
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N= 75 Max error = 1.0793e-001.

N= 75, Max error = 1.9772e-005.

1 — e v
0.81 | 0.8 i
061 0.6 i
0.4r 041 i
0.2r 0.2 i
> (0400000000 0 0 © ° 000 0 0 T M 6 00 GID ° 00 0 0 0000004 2\—4 (0$000000000000000000000000000000000000¢00000000000000000000000000000000000064
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0.8 0.8 1
-1 4 L L | L L L L -1 o N 4 b 1 1 1 | |
1 08 06 -04 -02 02 04 06 08 1 -1 -08 -06 04 -02 0 02 04 06 08 1
X X
Figure 3: Plot of f; (x)with final node Figure 4: Plot of f; (x)with final node
distribution on the adapted grid using distribatan uniform grid using
multiquadrics fore = 0.50. multiquadrics foe = 0.50.

Table 3: Adaptive interpolation with thin Plate splines perhed onf; (x)
IEN N, Nell oo a1l 0

1 11 10 0 7.7744 x 10717.7744 x 1071
2 21 18 0 6.1737 X 10716.1737 x 1071
3 39 26 0 3.7889 x 10713.9866 x 107!
4 65 24 0 1.2494 x 1071 1.9674 x 1071
5 89 25 0 1.5759 x 10729.9512 x 1072
6 144 26 0 1.5247 x 1073 2.1254 x 1072
7 140 15 0 1.7443 x 10™* 1.7058 x 1072
8 155 8 0 2.2736 x 1075 1.8041 x 1072
9 163 4 0 1.8612 x 107> 1.5063 x 1072
10 167 1 0 1.8696 x 1075 1.3760 x 1072
11 168 0 0 1.8696 x 10~° 1.1805 x 1072
N =168, Max error = 1.8756e-005. N =168, Max error = 1.1805e-002.
1 T T . . . 9 & 1 T T T T T
0.8 g 7 0.8 J
0.6 4 0.6F i
0.4F i 0.4+ ]
0.2 i 0.2+ 4
S o000 men o "
0.4} i 0.4} i
-0.61 B 0.6+ 4
-0.81 g B 0.8+ 4
08 08 04 02 0 02 04 06 08 1 e o6 04 o2 0 02 04 06 08 1
Figure 5:Plot of f; (x)with final Figure 6: Plot of f; (x)with final
node distribution on the adapted node distrilsutan uniform
grid using thin plate splines. grid using thlatp splines.
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fi(x)has two sharp corner features. We see in Tableswhe¥e the numerical results are recorded thatattemptive
interpolation with the multiquadrics and thin plaelines vyield good results and show the supéyiof the results on
adapted grids over that on uniform grids. For eXemp Tables 1 and 2, the multiquadrics converigetil and 8 iterations
for the values of = 0.25 ande = 0.50 and we end up with 107 and 75 centres respectidig errors on the adapted and
uniform grids at the end of the iterations for= 0.25 are 9.6826 x 107¢ and 3.0720 x 10~2 respectively, while for

£ = 0.50, we havel.9972 x 1075 and1.0793 x 10~! respectively. Likewise, in Table 3, the adaptiverpolation with the
thin plate splines converged in 11 iterations witke final error on adapted and uniform grids18%96 x 10~° and
1.1805 x 1072 respectively. Figures 1, 3 and 5 show how nodes cancentrated at the two localized features and
consequently making the error on adaptive gridsésfss than error on the uniform grids.

Example 2
We now consider the functigf(x). The results are recorded in Tables 4-6 and theegponding graphs in Figures 7-10.

Table 4: Adaptive interpolation with multiqguadrics performedf,(x) for e = 0.25.
IEN NN loo a1 Hoo,2e

1 11 10 0 3.7599 x 1072 3.7599 x 1072
2 21 20 0 3.0429 x 107%3.0429 x 1072
3 41 30 0 9.3860 x 10739.3860 x 1073
4 71 14 0 7.6060 x 10738.6926 x 1073
5 85 42 0 2.7473 x 10736.4279 x 1073
6 127 19 7 1.9018 x 10735.0687 x 1073
7 139 34 12 8.2866 x 10733.1699 x 1073

8 161 9 24 9.0104 x 107*2.3465 x 1073
9 146 85 0 4.7550 x 10°4.1964 x 1073
10 231 7 53 1.3225 X 107* 2.6456 x 1073

TABLE 5: Adaptive interpolation with multiquadrics performgdx) for € = 0.50.
IEN NN loo a1+ 1o,

1 11 10 0 3.7843 x 107%3.7843 x 1072
2 21 18 0 3.0780 x 107%3.0780 x 10~2
3 39 17 0 9.4590 X 10731.1614 x 1072
4 56 13 0 7.6950 x 1072 1.1193 x 1072
5 69 13 9 2.3647 x 10738.6072 x 1073
6 73 9 19 1.9238 x 1073 8.8347 x 1073
7 63 11 0 59121 x 10™* 7.1182 x 1073
8 74 5 11 4.8094 x 10~* 4.8000 x 1073
9 68 17 0 3.1726 x 1073 4.6202 x 1073
10 85 3 7 1.2085 x 10™* 6.4961 x 1073
11 81 15 0 1.9537 x 10™* 7.6950 x 1073
12 96 1 2 2.5136 x 107° 6.4800 x 1073
13 95 0 1 2.5362 x 1075 3.2785 x 1073
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N= 95 Max error = 2.5362¢-005. N= 95 Max error = 3.2785e-003.
14 . . . . . 14 . . . . .

12r 1 12+ b

Figure 7: Plot of £, (x)with final Figure 8: Plot of £, (x)with final
node distribution on the adapted node distrdyutn uniform grid
grid using multiquadrics far = 0.50. using multiquadric RBF for = 0.50.

Table 6: Adaptive interpolation with thin Plate splines Renied on f,(x)

IENN, N Moo, 11 1loo e

1 11 10 0 4.2796 x 10724.2796 x 1072
2 21 17 0 3.4922 x 107%3.4922 x 1072
3 38 14 0 1.0694 x 10721.3521 x 1072
4 52 11 0 8.7293 x 1073 1.4371 x 1072
5 63 8 0 2.6734 x 10738.0689 x 1073
6 71 8 0 2.1823 x 1072 9.9764 x 1073
7 79 4 0 6.6834 x 107* 9.2479 x 1073
8 83 3 0 5.4558 x 10™* 8.1003 x 1073
9 86 2 0 1.6709 x 10™* 5.0322 x 1073
10 88 2 0 1.3638 x 10™* 5.7502 x 1073
11 90 1 0 41785 % 1075 6.3425 x 1073
12 91 0 0 3.8421 x 107° 4.7526 x 1073
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N= 91, Max error = 4.7526e-003.

N= 91, Max error = 3.8421e-005.

0.9FY,
0.8}
07t

0.61
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0.2}
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0 02 | | | | | | | | |

1 08 06 04 02 0 02 04 06 08 1 1 08 06 04 02 0 02 04 06 08 1

X X

Figure 9Plot of f, (x)with final Figure 10 Plot of £, (x)with final
node distribution on the adaptive node distribution on uniform
gridusing the thin plate splines. grid using the thin plate splines.

The results forf, (x)is recorded in Tables 4 - 6. Figures 7 and 9 shww f,(x) has one sharp localized feature and the
adaptive algorithm allocated more centres ther@ur numerical experiments fy(x), we observed from Table 4 that the
adaptive algorithm did not converge with multiquasifor e = 0.25. Once again, Tables 5 and 6 show the advantage of
interpolation using the adaptive algorithm oveeipblation on uniform grid for functions with shagpadients or localized
features. We see that the errors on the adaptddugt like f; (x) are smaller than errors on the uniform grid. THapdive
interpolation with multiquadrics for the value of= 0.50 yields the error2.5362 x 1075 in 13 iterations with a total of 95
centres on the adapted grid while on the uniforid gf 95 centres, the error 32785 x 1072, Similarly, adaptive
interpolation with the thin plate splines gives #reors on the adapted and uniform grids of 91resras3.8421 x 10~° and
4.7526 x 1073 respectively.

Table7: Comparison of Errors on Adapted and Uniform Gfasf; (x) and f,(x) at the Final Iteration.

Multiguadric RBF Thin Plate Splines RBF
Final Final
Functon | ¢ |It [N [ | 1Ml a0 it [N Ml .0 [

fi(x) 025 11 107 96826x10°° 30720 x 1072

f1(x) 050 8 75 1.9772 x 10™° 1.0793 x 107*

filx)  efree 11 168 1.8696x 107>  1.1805x 107!
f>(x) 025 10 231 13325x10%x  26456x 107° «

f>(x) 050 13 95 25362 x 107° 3.2785x 1073

f(x)  efree 12 91 38421x107° 47526 1072

KEY: * Error message after this iteration: Matrix iss#ao singular or badly scaled, result may be inate.

Once again, we use Table 7 to compare the adaptolation with multiquadrics and the thin plamines. We observed
that both yield small maximum errors at the encea€h iteration for the two functions. We also notleat the adaptive
interpolation errors at the end of each iterationthe thin plate splines and the multiquadricstfar value ot = 0.50 were
almost the same. In summary, from Table 7 andrEgd, 3, 5, 7 and 9 show that the adaptive algurpperformed well
with the multiquadrics and the thin plate splinesff (x) andf,(x) that contain sharp corner features. Table 4 stibats
the adaptive algorithm did not yield the desiresutes with the multiquadricsfar= 0.25, thus the thin plate splines which is
parameter free yielded the best results. The tlaingplines require fewer iterations f61(x)
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4.0 Conclusion

We implemented an adaptive radial basis functiotsrpolation algorithm developed in[7] known asidaal subsampling
method and applied it to the thin plate splinest @sults show that the adaptive radial basis fandnterpolation yields a
better approximation to functions with localizedtigres than interpolation on uniform grid. Alsdpe tthin plate splines
which is parameter free yielded better results e to the multiquadrics which contains a shapameater and its
accuracy depends on the shape parameter. Neveghdle interpolation matrix of the thin plate sp8 needs more
computational efforts than that of the multiquagirand hence its implementation may not be trivigeeially in higher
dimensions.
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