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Abstract

In this paper, a class of some explicit s-stage of ordered Runge-Kutta methods
were investigated. Some explicit schemes were developed based on the first order
ordinary differential equation using Taylor series expansion method. These methods
were implemented and evaluated on a sampled problem. The error terms from the
results show that the methods are accurate, stable and consistence.
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1.0 Introduction

Linear multistep methods are used for the numesoéition of ordinary differential equations. A nerical method
starts from an initial point and then takes a shtep forward in time to find the next solution ceptually [1]. The process
continues with subsequent steps to map out soluimgle step methods (such as Euler's method) oefly to one previous
point and its derivative to determine the currealug. Methods such as Runge-Kutta take some intbateesteps (for
example, a half step) to obtain a higher order owthut then discard all previous information beftaking a second step
[2]. Multistep methods attempts to gain efficienzy keeping and using the information from previstsps rather than
discarding it. Consequently, multistep methodsrrédeseveral previous points and derivative valueshe case of linear
multistep methods, a linear combination of the jmes points and derivative values are used.

Definition: For a general s-stage explicit Runge-Kutta metheidus consider the initial value problem (IVP)tbé
form [3]

y =1ty yt,) =Y, @.2)
And let s be an integer (i.e the number of stagad)
8y1,830, 855, nnnn Ay s AgpyeenBg g 1,0,05,0000.06,Ch i G

be real constants;
then the method

Ky = f(to, o)
K, = f(t, +c,h,y, +hayK,)

Ks = f(t, +c5h,y, +h(ay K, +a,,K,))

Ks = f (to + Csh! yO + (alel + asZKZ + ""‘as,s—le—l))
which can be written as
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K, = f[tn_1+cih,yn_1+hzaﬂKjJ’ 1siss
j=1

Vi = Yo +h(bK, +b,K, +........ +b,K
Also written as
S
Yo =Yna t hzbi Ki
i=1
Is an s-stage explicit Runge-Kutta method fdr1). h is a non-negative real constant called the lgtegth of the method.
Usually C; satisfy the conditions
C, =8,,C; =8y *+8,,....C, =ay ta, +....+a
And can generally be written as

i-1
¢ =23
=1

Derivation of s-stage explicit Runge-Kutta method
Consider (1.1) and supposey = f (t) is it solution. Then by Taylor series expansion
h2 n
f(t) = f(0)+—f (O)+—f ©0)+........

Expand f (t) aboutt =t,

f)= F(t,)+ ;tf’) F(ty)+ & ‘Zt!o)z £ )+

Evaluate at point =t,

2
um:um+( )um “tﬁfm)+ .......
Thus a step length =t, —t,
— h2 " h +1
suchthat  f(t,)= f(t)+ )+ () +Hf”(t0)+0(h”)

So since (1.1) is of order one

Y1 = Yo +hyg
Yo=Y, +hy]
Y; =Y, +hy,
Then by successive approximation
_ h , h? h? & b+l
yn+1_yn+iyn ayn '+Hyn +O(h )

And, if f(t,,y,) = f, and so on, then

h,  h*(df 1 . (dp™tf
=Yt f +..+—=h° +0lh*
SERARETR 2'(dtjn p! (dt”’l j =)

To obtain a general s-stage explicit Runge-Kuttthoe, we let

Y., =Y, +hdt,.Y,;h) 1L2)

where(l}(tn ,Yn;h) = ibi K,
i=1
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So tha(l.2) becomes

Yn+1 = Yn + hz bi I‘<i
i=1
With

i—1
K, = f[tn +hc,,Y, +h>"a, Kj] @3)
=

Where ¢, =0 for an explicit method and1.3) can be solved for eacK; in turn.

2.0 Order of Runge-Kutta method:
A Runge-Kutta method has order p if for sufficigremooth problemﬂ.l) , p is the largest integer for which [4]
y(t +h) = y(t) — het, y(t); h) = O(h*™)

And this means that the local truncation erroﬂéh p+1).

3.0 Implementation of the method

Consider the initial value problem [5]
dy 2 1
L =1+(y-t)?,y(0) == 14
-ty =3 (L4)

And let

y=t+z (L5)
By means of substitutingl.5) into (1.4) , we have

%(t+z)=1+(t+z—t)2

1+ %2142
dt

dz
—=1+7°-1
dt

dz _ _,

dt
Separating the variables leads to

dz
?:dt

z7%dz = dt
I z7%dz= J.dt
-z'=t+C (where C is the constant of integration)

_1:t+C
V4

On integration

From (L5)
z=y-t
_i =t+C
y—t
-1=t(y-t)+C(y-t)

-1=(t+C)y-t)
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=1
Y t+C
1
t)=t-
) t+C
By the initial conditiony(0) = =
o
y(0)=5=0-2
1.1
2 C
c=-2
1
t)=t——
vit)=t-—
1

y(t):t+g,t¢2

Numerical solutions are given to a second orderg@tiutta method, a third order Runge-Kutta method a fourth order
Runge-Kutta method of the IVP i{lL.4) , obtaining numerical solutions for values of ttagand includingt =1 with a step
size of 0.1as found in Table 1.

Tablel: Solutions of ordered Runge-Kutta methodk W= 0.1

T | True Solution ¥ order Runge-Kutta "Border Runge-Kutta Morder Runge-Kutta
0.0 | 0.5000 0.5000 0.5000 0.5000
0.1 0.6263 0.5750 0.6263 0.6263
0.2 | 0.7556 0.6534 0.7556 0.7556
0.3 0.8882 0.7360 0.8882 0.8882
0.4 | 1.0250 0.8237 1.0250 1.0250
0.5] 1.1667 0.9176 1.1667 1.1667
0.6 1.3143 1.0195 1.3143 1.3143
0.7] 1.4692 1.1314 1.4692 1.4692
0.8] 1.6333 1.2565 1.6333 1.6333
0.9] 1.8091 1.3991 1.8091 1.8091
1.0| 2.0000 1.5656 1.9999 2.0000

Table 2: Relative Errors of ordered Runge-Kuttatmds withh = 0.1

T | 2" order Runge-Kutta "Border Runge-Kutta "order Runge-Kutta
0.0 | 0.0000 0.0000 0.0000
0.1 | 8.1910 0.0000 0.0000
0.2 | 13.5257 0.0000 0.0000
0.3 | 17.1358 0.0000 0.0000
0.4 | 19.6390 0.0000 0.0000
0.5 | 21.3508 0.0000 0.0000
0.6 | 22.4302 0.0000 0.0000
0.7 | 22.9921 0.0000 0.0000
0.8 | 23.0699 0.0000 0.0000
0.9 | 21.6920 0.0000 0.0000
1.0 | 21.7200 0.0050 0.0000
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4.0  Discussion of Results:
Table 1 gives the solutions ofL.4) for 2" order, ¥ order and % order Runge-Kutta methods to four-decimal-place

accuracy. Comparing the solutions of these orde¢haas to the true solutions in the table, it iseslied that the values of
the 3 order Runge-Kutta method are much more accurate tifee values of the"2order Runge-Kutta method and tHE 4
order Runge-Kutta method gives exact values asrtizesolution which implies that thé"4rder is so accurate. Therefore,
4™ order Runge-Kutta method beats the heck ouftdr2ler and 8 order Runge-Kutta methods.

Table 2 gives the values of the relative errorthim 2 order, & order and % order Runge-Kutta methods &t=1 to be
21.72 percent, 0.005 percent and O percent resplctin this comparison, thé“order Runge-Kutta method is about 4000
times accurate than th&"@rder Runge-Kutta method and tHB @rder Runge-Kutta method is about 4000 and 1600000
times accurate tharl®®rder and %' order Runge-Kutta methods respectively. The dronnds for each of these methods are
given below.

The 29 order Runge-Kutta method agrees with a Taylor pmiyial of degree 2. So, the local truncation efootthis method

is O(hs) and the global truncation error is(h)z).

The actual solution is

1
2-1)
y()=1+@-9°
y'(t)=22-1)7

B h3

y(t) =t+ A£2

Y"(t)— =6(2-1) (1.6)

with t =1, (L.6) yields a bound of 0.001 on the local truncatiawefor each of the ten steps whir= 0.1
The 3 order Runge-Kutta method agrees with a Taylor mariyial of degree 3. So, the local truncation efootthis method

is O(hs) Differentiating (1.6) gives

RIOUs " ey

with t =1, (1.7) yields a bound of 0.0001 on the IocaI truncatioorefor each of the ten steps whiar= 0.1
The 4" order Runge-Kutta method agrees with a Taylor pmiyial of degree 4. So, the local truncation efootthis method

is O(h4) Differentiating (1.7) gives

° h4 a.7)

s h>

SIOLs N _1202-1) 19)

with t =1, (1.8) yields a bound of 0.00001 on the local truncagamor for each of the ten steps whiare 0.1
Table 3: Error Bounds of ordered Runge-Kutta method

Order of Runge-kutta Error bound

2nd h h3
Y05 =6@-1" 75

3rd h4
ywa) -2«2 0>

4th 5
yo (t)h =120(2- t)‘Gh—

These show that the Runge-Kutta methods resulisapid decrease in errors when the step sizedulixed.
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5.0 Conclusion:

Investigation carried out on a class of some eitmistage of ordered Runge-Kutta methods has shbatrthe 4 order
Runge-Kutta method gives exact values as the tligiens and this implies that th& 4rder is so accurate and consistent
when compared to thé®2and & order Runge-Kutta methods.
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