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                       Abstract 

 
In this paper, a class of some explicit s-stage of ordered Runge-Kutta methods 

were investigated. Some explicit schemes were developed based on the first order 
ordinary differential equation using Taylor series expansion method. These methods 
were implemented and evaluated on a sampled problem. The error terms from the 
results show that the methods are accurate, stable and consistence. 
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1.0    Introduction 

Linear multistep methods are used for the numerical solution of ordinary differential equations. A numerical method 
starts from an initial point and then takes a short step forward in time to find the next solution conceptually [1]. The process 
continues with subsequent steps to map out solution. Single step methods (such as Euler’s method) refer only to one previous 
point and its derivative to determine the current value. Methods such as Runge-Kutta take some intermediate steps (for 
example, a half step) to obtain a higher order method, but then discard all previous information before taking a second step 
[2]. Multistep methods attempts to gain efficiency by keeping and using the information from previous steps rather than 
discarding it. Consequently, multistep methods refer to several previous points and derivative values. In the case of linear 
multistep methods, a linear combination of the previous points and derivative values are used. 

Definition:  For a general s-stage explicit Runge-Kutta method, let us consider the initial value problem (IVP) of the 
form [3] 
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And let s be an integer (i.e the number of stages) and 
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              which can be written as 
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Is an s-stage explicit Runge-Kutta method for ).1.1(  h is a non-negative real constant called the step length of the method. 

Usually ic  satisfy the conditions 

                                   1,2132313212 .....,....,, −+++=+== sssss aaacaacac  

And can generally be written as 

                                                               ∑
−

=

=
1

1

i

j
iji ac  

Derivation of s-stage explicit Runge-Kutta method 
Consider )1.1( and suppose )(tfy =  is it solution. Then by Taylor series expansion 
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Then by successive approximation 
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To obtain a general s-stage explicit Runge-Kutta method, we let 

                                 ( )hYthYY nnnn ;,1 φ+=+                                                                      )2.1(  

                   where   ( ) ∑
=

=
s

i
iinn KbhYt

1

;,φ   

 
Journal of the Nigerian Association of Mathematical Physics Volume 25 (November, 2013), 141 – 146            



143 

 

A Class of Some Explicit S-Stage of Ordered…   Arowolo, Kareem  and  Salawu    J of  NAMP 
 
              So that )2.1(  becomes 
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Where 0=ic  for an explicit method and )3.1(  can be solved for each iK  in turn. 

2.0 Order of Runge-Kutta method: 
A Runge-Kutta method has order p if for sufficiently smooth problems )1.1( , p is the largest integer for which [4] 

                              )());(,()()( 1+=−−+ phOhtythtyhty φ  

And this means that the local truncation error is ( )1+phO . 

3.0 Implementation of the method 
Consider the initial value problem [5] 
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By means of substituting )5.1(  into )4.1( , we have 
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Separating the variables leads to 
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On integration 
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Numerical solutions are given to a second order Runge-Kutta method, a third order Runge-Kutta method and a fourth order 
Runge-Kutta method of the IVP in )4.1( , obtaining numerical solutions for values of t up to and including 1=t  with a step 

size of 0.1as found in Table 1. 
 
Table1: Solutions of ordered Runge-Kutta methods with 1.0=h   
 
T True Solution 2nd order Runge-Kutta 3rd order Runge-Kutta 4th order Runge-Kutta 
0.0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 

0.5000 
0.6263 
0.7556 
0.8882 
1.0250 
1.1667 
1.3143 
1.4692 
1.6333 
1.8091 
2.0000 

0.5000 
0.5750 
0.6534 
0.7360 
0.8237 
0.9176 
1.0195 
1.1314 
1.2565 
1.3991 
1.5656 

0.5000 
0.6263 
0.7556 
0.8882 
1.0250 
1.1667 
1.3143 
1.4692 
1.6333 
1.8091 
1.9999 

0.5000 
0.6263 
0.7556 
0.8882 
1.0250 
1.1667 
1.3143 
1.4692 
1.6333 
1.8091 
2.0000 

 
Table 2: Relative Errors of ordered Runge-Kutta methods with 1.0=h  

T 2nd order Runge-Kutta 3rd order Runge-Kutta 4th order Runge-Kutta 
0.0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 

0.0000 
8.1910 
13.5257 
17.1358 
19.6390 
21.3508 
22.4302 
22.9921 
23.0699 
21.6920 
21.7200 

0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0050 

0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
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4.0 Discussion of Results: 
Table 1 gives the solutions of )4.1(  for 2nd order, 3rd order and 4th order Runge-Kutta methods to four-decimal-place 

accuracy. Comparing the solutions of these order methods to the true solutions in the table, it is observed that the values of 
the 3rd order Runge-Kutta method are much more accurate than the values of the 2nd order Runge-Kutta method and the 4th 
order Runge-Kutta method gives exact values as the true solution which implies that the 4th order is so accurate. Therefore, 
4th order Runge-Kutta method beats the heck out of 2nd order and 3rd order Runge-Kutta methods. 
Table 2 gives the values of the relative errors in the 2nd order, 3rd order and 4th order Runge-Kutta methods at 1=t  to be 
21.72 percent, 0.005 percent and 0 percent respectively. In this comparison, the 3rd order Runge-Kutta method is about 4000 
times accurate than the 2nd order Runge-Kutta method and the 4th order Runge-Kutta method is about 4000 and 16000000 
times accurate than 3rd order and 2nd order Runge-Kutta methods respectively. The error bounds for each of these methods are 
given below. 
The 2nd order Runge-Kutta method agrees with a Taylor polynomial of degree 2. So, the local truncation error for this method 

is O( )3h  and the global truncation error is O( )2h . 

The actual solution is  
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with 1=t , )6.1(  yields a bound of 0.001 on the local truncation error for each of the ten steps when 1.0=h  

The 3rd order Runge-Kutta method agrees with a Taylor polynomial of degree 3. So, the local truncation error for this method 

is O( )3h  Differentiating )6.1( gives 

                                               
!4

)2(24
!4

)(
4

5
4

)4( h
t

h
ty −−=                                                   )7.1(  

with 1=t , )7.1(  yields a bound of 0.0001 on the local truncation error for each of the ten steps when 1.0=h  

The 4th order Runge-Kutta method agrees with a Taylor polynomial of degree 4. So, the local truncation error for this method 

is O( )4h  Differentiating )7.1( gives 
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with 1=t , )8.1(  yields a bound of 0.00001 on the local truncation error for each of the ten steps when 1.0=h  

Table 3: Error Bounds of ordered Runge-Kutta methods 
Order of Runge-kutta Error bound 
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These show that the Runge-Kutta methods results in a rapid decrease in errors when the step size h is reduced. 
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5.0 Conclusion: 

Investigation carried out on a class of some explicit s-stage of ordered Runge-Kutta methods has shown that the 4th order 
Runge-Kutta method gives exact values as the true solutions and this implies that the 4th order is so accurate and consistent 
when compared to the 2nd and 3rd order Runge-Kutta methods. 
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