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                       Abstract 

 
For the case of laminar boundary layer flow over a flat plate with zero angle of 

incidence and pressure gradient we derive the relation for energy thickness of 
Wieghardt [1]  (i.e the balance between mechanical energy loss and heat generated by 
fluid friction), (see also Schlichting [2].  By applying a parabolic velocity profile in the 
relation for energy thickness and also in Karman-Pohlhausen [3] momentum integral 
equation an approximate value of the boundary layer thickness is determined.  
Comparison of the approximate value with the exact Blasius [4] value leads to the 
determination of the percentage error for this parameter.  It is observed that as the 

boundary layer flow becomes more laminar (i.e 
5105Re ×<< ), where Re is the 

Reynolds number, the boundary layer thickness increases accordingly with consequent 
increase in the percentage error.  
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1.0    Introduction 

A boundary layer is the layer fluid in the immediate vicinity of a boundary surface where the effects of viscosity are 
significant.  Laminar boundary layer can be loosely classified according to their structure and the circumstances under which 
they are created.  Thus, we have Stokes boundary layer and Blasius boundary layer.  The former is the thin layer which 
develops on an oscillating body, while the later refers to the well-known similarity solution near an attached flat plate held in 
an oncoming unidirectional flow. 

The subject, boundary layer, has been discussed extensively by many authors since the development of the concept by 
Prandtl [5].  For instance Craft and Lowell [6] applied steady state boundary layer theory to two aspects of oceanic 
hydrothermal heat flux and in their analysis they showed that, for near-axis model, heat transfer  in the hydrothermal 
boundary layer is greater than the input from steady state generation of the oceanic crust by sea flow spreading. 

Habib et al [7] carried out transient calculation of the boundary layer flow over spills using simulation and experimental 
approaches.  They validated their results against experimental data and also made comparison of the simulated results with 
empirical prediction models. 

Dorfman [8] presented a review of universal functions widely used in different areas of boundary layer theory for many 
years up to the present.  In his work he adopted various solutions from many published articles to show the breadth of 
universal approaches with application in laminar, turbulent and transition boundary layers in solving non-isothermal and 
conjugate heat transfer problems as well as in planetary boundary layer problems in meteorology.  

Other researchers in the subject include, notably Olsson and Turkdogan [9], Mahmoudian and Scales [10], Kim and 
Changhoon [11], Eyo et al. [12], Huguera [13], Bohr et al. [14], etc.  

In this work we incorporate a parabolic velocity profile in the relation for energy thickness and in momentum integral 
equation to determine the approximate value of the boundary layer thickness. By comparing the approximate value of this 
parameter with exact value the percentage error of this parameter is also determined. Our analysis is based on plane, 
incompressible, steady flow and on the assumption of a laminar boundary layer.  
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2.0 Balance Between Loss of Mechanical Energy and Heat Generated by Fluid Friction  
 Let x, y be the rectangular coordinates with y vertically upwards and u, v the corresponding velocity components, 

then the equations for laminar boundary layer flow are: 
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Navier-Stokes equation:  ( )3.2
2

2

y

u

x

p

y

u
v

x

u
u

t

u

∂
∂+

∂
∂−=









∂
∂+

∂
∂+

∂
∂ µρ  

where U = free stream velocity, ρ = fluid density, p = fluid pressure,  
µ = dynamic viscosity. 
 
2.1 Deduction from Boundary Layer Equations 

 We shall restrict our analysis to steady state flow.  Here 0=
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where 
ρ
µ=v  is the kinematic viscosity. 

From Bernoulli’s equation(2.2), we find 
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2.2 Analysis of the Work 
 We multiply each term of eqn. (2.6) by the velocity u to get 
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From continuity equation (2.1) we get, by integration, the velocity 
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Using (2.8) in (2.7) and integrating the result from y=0 to y=δ wrt y, gives  
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We now simplify each term in the square bracket of (2.9) as follows: 
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(using integration by parts). 
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The rhs of (2.9) is also simplified by integration by parts as follows: 
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Substituting (2.10), (2.11), (2.12) and (2.13) into (2.9) and simplifying, we obtain 
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Writing the lhs of (2.14) compactly, eqn (2.14) becomes 
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(using 
ρ
µ=v ) 

It should be noted that for values of δ≥y  we have 0=
∂
∂

y

u
 and for y=0, we also have u=0.  Thus, we can without loss of 

generality replace y=δ by y→∞ as the upper limit of integration, so that (2.16) becomes 
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By definition, energy thickness, ( )x3δ , is given by (Wieghardt [1] ) 
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so that (since the lhs of (2.18) is a function of x only), (2.17) can be expressed in the form 
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In eqn. (2.19) the lhs represents loss of mechanical energy, while the rhs represents the energy dissipated in friction and 
converted into heat.   
 
3.0 Application of Parabolic Velocity Profile in the Energy Thickness Equation and 

Momentum Integral Equation 
From the parabolic velocity profile  
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so that  
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Substituting (3.2) in the rhs of (2.19) we find
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Integrating the rhs of (3.3), we find after simplification 
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Now, Karman-Pohlhawsen momentum integral equation for energy thickness, ,3δ  is given by  
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Substituting (3.1) in (3.6) we have  
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which on integration and simplification gives  
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Comparing (3.5) and (3.10), we find 

  )11.3(
3

8

105

22

δρ
µδ
udx

d =  

i.e 

  
( )

)12.3(
3

8

105

11 2

udx

d

ρ
µδ =  

or  

  
( )

)13.3(.
11

2802

udx

d

ρ
µδ =  

Journal of the Nigerian Association of Mathematical Physics Volume 25 (November, 2013), 117 – 122            



121 

 

 
A Note on Boundary Layer Theory    Eyo A. E.     J of  NAMP 

 
Integrating (3.13) we get 
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where C is the constant of integration  

We note that when 0,0 == δx  so that 0=C .  Thus equation (3.14) becomes  
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Another way of writing this is  
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4.0 Discussion and Conclusion 
In this work, we see that incorporation of a parabolic velocity profile in Wieghardt’s  definition of energy thickness and in 
Karman-Pohlhausen  momentum integral equation can provide an alternative method of determining the approximate value 
of the boundary layer thickness for this profile.  Comparison of the approximate value of the boundary layer thickness (3.16) 

or (3.17) with the exact value, ( )2

1

Re0.5Re x=δ , shows that the percentage error for this parameter is about 0.88%. This 

result is adequate  for the present purpose since it closely tends to the exact value [4].  In (3.16), we notice that as the 

boundary layer flow becomes more laminar (i.e 5105Re ×<< ), the boundary layer thickness increases with the 
corresponding increase in the percentage error (or the boundary layer thickness is small when the Reynolds number is large 
and hence decrease in the percentage error).  On the other hand, if the boundary layer thickness is written as in (3.17), we 

observe that δRe  is large when xRe  is large and vice versa.  Finally, it should be noted that this method is applicable to the 

velocity profile applied to laminar boundary layer flow.                                   
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