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Abstract

For the case of laminar boundary layer flow over a flat plate with zero angle of
incidence and pressure gradient we derive the relation for energy thickness of
Wieghardt [1] (i.e the balance between mechanical energy loss and heat generated by
fluid friction), (see also Schlichting [2]. By applying a parabolic velocity profile in the
relation for energy thickness and also in Karman-Pohlhausen [3] momentum integral
equation an approximate value of the boundary layer thickness is determined.
Comparison of the approximate value with the exact Blasius [4] value leads to the
determination of the percentage error for this parameter. It is observed that as the

boundary layer flow becomes more laminar (i.e Re<<5x10°), where Re is the
Reynolds number, the boundary layer thickness increases accordingly with consequent
increase in the percentage error.
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1.0 Introduction

A boundary layer is the layer fluid in the immediaticinity of a boundary surface where the effaftsiscosity are
significant. Laminar boundary layer can be loos#assified according to their structure and threwnstances under which
they are created. Thus, we have Stokes boundgey End Blasius boundary layer. The former istthie layer which
develops on an oscillating body, while the latdergto the well-known similarity solution near attached flat plate held in
an oncoming unidirectional flow.

The subject, boundary layer, has been discussem@xely by many authors since the developmenh@fconcept by
Prandtl [5]. For instance Craft and Lowell [6] éipg steady state boundary layer theory to two etspef oceanic
hydrothermal heat flux and in their analysis théypwed that, for near-axis model, heat transfer the hydrothermal
boundary layer is greater than the input from stestdte generation of the oceanic crust by sea siogading.

Habib et al [7] carried out transient calculatidrttee boundary layer flow over spills using simidatand experimental
approaches. They validated their results agaxstrémental data and also made comparison of thelated results with
empirical prediction models.

Dorfman [8] presented a review of universal funasiavidely used in different areas of boundary lahpeory for many
years up to the present. In his work he adoptetus solutions from many published articles towghbe breadth of
universal approaches with application in laminarptilent and transition boundary layers in solvimap-isothermal and
conjugate heat transfer problems as well as ingpéaiy boundary layer problems in meteorology.

Other researchers in the subject include, notaligs@dd and Turkdogan [9], Mahmoudian and Scales, [KBh and
Changhoon [11], Eyo et al. [12], Huguera [13], Behal. [14], etc.

In this work we incorporate a parabolic velocityfile in the relation for energy thickness and iomentum integral
equation to determine the approximate value oftihhendary layer thickness. By comparing the apprakénvalue of this
parameter with exact value the percentage errathisf parameter is also determined. Our analysibaised on plane,
incompressible, steady flow and on the assumpti@laminar boundary layer.
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2.0 Balance Between Loss of Mechanical Energy and Heat Generated by Fluidckon
Let x, y be the rectangular coordinates wjtivertically upwards and, v the corresponding velocity components,
then the equations for laminar boundary layer faorer

Continuity equation: g—i g—; =0 (2.1)
Bernoulli equation: P +1U Z = const. (2.2)
L 2
2
Navier-Stokes equation: o, a—u + ua—u + V@ = —@ + ,ua—l: (2.3)
ot ox oy 0x oy

whereU = free stream velocityy = fluid density,p = fluid pressure,
L = dynamic viscosity.

2.1 Deduction from Boundary Layer Equations
_ . ou op _dp
We shall restrict our analysis to steady statw.fldﬂereE =0 anda— =—, so that (2.3) reduces to
X
you, 0u__1d 62u
L, (24)
ax ay P dx oy
whereV = H is the kinematic viscosity.
Yo,
From Bernoulli's equation(2. 2) we find
dp _
—_— 25
- pU (25)

so that (2.4) becomes
2
p M Moy, 0 (26)
0X ay dx dy

2.2 Analysis of the Work
We multiply each term of eqn. (2.6) by the velgcitto get

From continuity equation (2.1) we get, by integratithe velocity

y ou

v=-| —d 28

[ (29)

Using (2.8) in (2.7) and integrating the resulinfrg=0 to y=owrt y, gives
ou  odu( gy Ou du

u —d ud — |dy = u—d 29
L{GX Oy(joaxyj d}yj a7 (29)

We now simplify each term in the square brackdld) as follows:

[ uzg—:d =5j‘5 olw) (210)
du(y 9 10 [olu?)( v @
A {” £ U o dyﬂdy b [%U x dyﬂdy
3
:%UZL" %dy—%f ia“;)dy (211)
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(using integration by parts).

s - duU s d 16 aluu?) . 1,0 ou
uwl—dy==| u—U?jdy==| ——dy--U?| — 212

,[0 dx Y- J- dx ( )dy 2J-0 ox y 2 J-O oX d ( )
The rhs of (2.9) is also S|mpl|f|ed by integratioy parts as follows:

v u—dy v{{ ‘;ﬂ - [‘;;j dy} ~v[ (g—;jzdy (213

5
. ou _ ou

(since the term U— | vanishes fou=0aty=0 and fora— =0 aty=9)
y

ay |,
Substituting (2.10), (2.11), (2.12) and (2.13) i(R®D) and simplifying, we obtain
2

1l 0( 3, 1l 0 2 s (du

- — -—| —(uu =-v| | — 214

ZIO ax( )dy 2J.0 6x( )dy IO (GyJ el (214)
Writing the lhs of (2.14) compactly, egn (2.14) bees

2

10 (s s (0u

——| Wwu?-uily=v| |= 215

ol vy =i (2] o (219

or PO f: u( )dy ,Jj ( j dy (216)

(usingVv = ﬁ)
P

ou
It should be noted that for values §f= & we havea— =0 and fory=0, we also have=0. Thus, we can without loss of

generality replacg=0byy - w as the upper limit of integration, so that (2.16¢dmes
2
pO 2_ 2\, — ¢ [0U
—— | uU“-u = — 217
By definition, energy thickness@'3 (X) is given by (Wieghardt [1] )

U%,(x)= [ ulu? -u®)ay (218)
so that (since the lhs of (2.18) is a functiox ohly), (2.17) can be expressed in the form

29 ()= f (auj dy (219)

2 dx ay

In egn. (2.19) the Ihs represents loss of mechheitargy, while the rhs represents the energy missi in friction and
converted into heat.

3.0  Application of Parabolic Velocity Profile in the Energy Thickness Egation and

Momentum Integral Equation
From the parabolic velocity profile

s

ou (2 2yj
U ~ oo I
dy |\ o
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so that
[%J :Uz(g—ﬂj :Uz(i—ﬂ+4y2] (32)
oy o o° o> o o
Substituting (3.2) in the rhs of (2.19) we find
2
o d _ %[ au 7 4 8y 4y?
E&(Ugéz)—ﬂj(aj dY~,UI UZ(E_E-F? dy 383
0 0

Integrating therhs of (3.3), we find after simplification

od( , _ 12[ 40 407  40°
E&(U 8,(x)= (— + j

52 5 o
i.e
P A (s (x)= HH Y
or
2
d(g,) _ 2 JAm® 8y (35)

dx o’ 30 3mud

Now, Karman-Pohlhawsen momentum integral equatorefiergy thicknesig, is given by

u u)’
g,(x)=[— 1—[—j }dy (36)
° ! U[ U
Substituting (3.1) in (3.6) we have
o 2 2 2 2 3
5,4 = H%-%}—(?’—%} dy (37)
0
_o(2y _y? 8y’ 8y' 2y° 4yt 4y°® y°
(3= (? Tt T e e T | (38)

which on integration and simplification gives

_ 220

() =15 (39)
or

d 22 d

—0,(X)= — 310

dx () 10E dx (810
Comparing (3.5) and (3.10), we find

22d 5__ 8u (311)

105dx 30 uo
i.e

2

11 d(o?) _ 8y (312

105 dx 3pu
or

2
d ):280_ H (313
dx 11 pu
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Integrating (3.13) we get
52 = 2545 % 1, (314)
P u
where C is the constant of integration
We note thatwherxx =0, O =0 so thatC =0. Thus equation (3.14) becomes

J = 5044x |- (315)
JOUX
or
o0 _ 5044
x (Rex)% (316)
Another way of writing this is
Re; = 5044Re, )" (317

4.0 Discussion and Conclusion

In this work, we see that incorporation of a pat@beelocity profile in Wieghardt's definition ofénergy thickness and in

Karman-Pohlhausen momentum integral equation cavige an alternative method of determining therapimate value

of the boundary layer thickness for this profil€omparison of the approximate value of the boundiygr thickness (3.16)
1

or (3.17) with the exact valudRe; = 5.O(ReX )E, shows that the percentage error for this paranietbout 0.88%. This

result is adequate for the present purpose sincksely tends to the exact value [4]. In (3.16% notice that as the

boundary layer flow becomes more laminar (Re<< 5><105), the boundary layer thickness increases with the
corresponding increase in the percentage errathéoboundary layer thickness is small when the Biefgnumber is large
and hence decrease in the percentage error). @atlier hand, if the boundary layer thickness iigtevr as in (3.17), we

observe thafRe; is large whenRe, is large and vice versa. Finally, it should béedcthat this method is applicable to the
velocity profile applied to laminar boundary laykaw.
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