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Abstract

MHD flow of a micropolar fluid past a stretched permeable surface with heat
generation or absorption was considered in this work. The governing partial
differential equations were transformed into their equivalent cylindrical coordinate
system from its original form (rectangular form). A set of similarity parameters are
employed to convert the governing partial differential equationsto ordinary differential
equations. The obtained self-similar equations are solved using the Adomian
Decomposition Method. The effect of various physical parameters on the velocity
profile, microrotation and temperature distribution were investigated. The obtained

results shows that as the Hartmann number ( Ha) increase the velocity profile and
the microrotation reduce while the temperature profile increases.

Keywords: Convective, MHD, Adomian decomposition, Micropo/Radiation.
1.0 Introduction

Micropolar fluids are subset of the micromorphiaidl theory introduced in a pioneering paper by geim1].
Micropolar fluids are those fluids consisting ohdamly oriented particles suspended in a viscoudiumg which can
undergo a rotation that can affect the hydrodynanoicthe flow, making it a distinctly non- Newtonidluid. They
constitute an important branch of non-Newtoniaidfldynamics where microrotation effects as welh@sroinertia are
exhibited. Eringen's theory has provided a goodehéar studying a number of complicated fluids, lsws colloidal
fluids, polymeric fluids and blood. The effectsrafliation on unsteady free convection flow and hestsfer problem
have become more important industrially. At higlegting temperature, radiation effect can be cgigaificant. Many
processes in engineering areas occur at high tetuyperand knowledge of radiation heat transfer bmeso very
important for design of reliable equipments, nuclplants, gas turbines and various propulsion dsvior aircraft,
missiles, satellites and space vehicles. Basechesetapplications, Cogley et al.[2] showed thathim optically thin
limit, the fluid does not absorb its own emittediedion but the fluid does absorb radiation emittgdthe boundaries.
Hossain and Takhar[3] have considered the radiaftects on mixed convection boundary layer flowaof optically
dense viscous incompressible fluid along a vertptate with uniform surface temperature. Makindeg4hmined the
transient free convection interaction with thermatliation of an absorbing emitting fuid along mayiwertical
permeable plate. Satter and Hamid[5] investigatedunsteady free convection interaction with thémadiation of an
absorbing emitting plate. Heat and mass transfectsfon unsteady magneto hydrodynamics free caoioveitow near a
moving vertical plate embedded in a porous mediuas Wwresented by Das and Jana[6]. Olajuwon[7] examin
convection heat and mass transfer in a hydromagfiet of a second grade fluid past a semi-infisiteetching sheet in
the presence of thermal radiation and thermal siifio. Haque et al.[8] studied micropolar fluid beba on steady
magneto hydrodynamics free convection flow and nessssfer through a porous medium with heat andsniiases.
Mahmoud [9] considered thermal radiation effectsMiiD flow of a micropolar fluid over a stretchingirface with
variable thermal conductivity. Aouadi [10] reportachumerical study for micropolar flow over a stteéhg sheet. Soret
and dufour effects on mixed convection in a nonrd@gorous medium saturated with micropolar fluidswstudied by
Srinivascharya[11]. Olajuwon et,al.[12] investightihe effects of thermo-diffusion and thermal réidim on unsteady
heat and mass transfer of free convective MHD mpiclar fluid flow bounded by a semi- infinite poropkate in a
rotating frame under the action of transverse mégfield with suction. Oahimire et al[13] investited the effects of
thermal-diffusion and thermal radiation on unsteaént and mass transfer by free convective MHD opialar fluid
flow bounded by a semi- infinite vertical platedrslip flow regime under the action of transversegnetic field with
suction. The results shows that the observed paeamkave significance influence on the flow, head mass transfer.
Kedr et al[14] considers steady, laminar, MHD flofva micropolar fluid past a stretched semi-inénitertical and
permeable surface in the presence of temperatyrendent heat generation or absorption, magnetd éied thermal
radiation effects.
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To the best of our knowledge, the use of Adomiarddgosition method to obtain the solution of a @mtive
MHD flow of a micropolar fluid past a stretchedrpeable surface with radiation has remained uneggloThe
objective of the current work is to study the effed various parameters that may occur on the wuglqurofile,
microrotation and temperature profile.

2.0  Problem Formulation

Consider steady, laminar, convective, MHD bounddayer flow of a micro polar fluid past a permeabieformly
stretched semi-infinite vertical plate in the prese of heat generation or absorption, thermal tadiaand viscous
dissipation effects. The fluid is assumed to beais and has constant properties. The applied rtiadiedd is assumed
to be constant and the magnetic Reynolds numtzsismed to be small so that the induced magnetitifi neglected.
No electric field is assumed to exist and the éfiict of magneto hydrodynamics is neglected.

The governing boundary-layer equations may be evritts follows:

Continuity equation:

—+—=0
ox oy 1)
Momentum Equation:
ua—u+v@:ua l: k, — ON _ 0B (X)u+g,8(T -T.)
ox oy ov oy Yo, @)
Angular momentum:
G,— N _on-_g
ay® oy 3)
Energy equation:
2
GO 0T _ 0T v (au) Q(x)(T 1)- 1 aq,
0x ay ay? c PC, pC, oy @)
Subject to boundary conditions:
y=0:u=Uyx v=0, T=T,, N=0,
y—>OOZU—>O, T—»TDo N—»O, (5)

WhereB(X) magnetic inductionCp specific heat at constant preSSLQ(X) heat generation or absorption coefficient,
Ec Eckert number, f dimensionless stream functioq), radiative heat flux,T temperature at any poinil'W wall
temperature HaHartmann number],, free stream temperature) ; stretching velocityy normal or y-component of
velocity, x distance along the plate, y distancenra to the plate, G, is the microrotation constanf? is the fluid
density,k1 is the coupling constant molecular thermal diffusivity, fluid apparent kinematic viscosityg
dimensionless heat generation or absorption pasmeétfluid electrical conductivity,l/ stream functionU is the
tangential or x-component of velocityN is the angular velocity or microrotatiorg is the acceleration due to gravity,

ﬁ is the volumetric coefficient of thermal expansidﬂ is the dimensionless temperaturl@js the dimensionless
microrotation.

In other to transform our equations into cylindricaordinate, we introduce the following transforms
X=rcos®, y=rsin®,u - u,V - Uy

0 _1 0 0 _0

dy roo’ X or ©)

Substituting (6) into (1) to (5) we have the foliog:
Continuity equation:

l[a(rur) auj 0 -

ri or 00
Momentum equation:
2
o Vo du 00 (10u) KON oB(), | oo p) ®
or r 00 raolr 00 r 00 P
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Angular momentum equation:

ii(la_Nj_ZN_}aur =0 9)
r 00\r 00 r 00
Energy equation:
2 2

ura_T+u_®a_T:£26_-l;+i lai +%(T_Tm)_il ai (10)

o r 00 r°00° c,\rdo ~c, pC,r\ 00
©=0:u =U,, ug =0, T=T,, N =0,
O—>00:ur—»0, T—»Too, N—»O, (11)
Using the Rosseland approximation and followingAEbawy [15], the radiative heat flux is given by:

40, oT*

= - - 12

=73 s (12)

Where 0, is the Stefan-Boltzmann constant akd is the mean absorption coefficient. The tempeeatifferences

within the fluid is assumed sufficiently small suttat T may be expressed as a linear function of temperatu
ExpandingT4 in a Taylors series aboilt, and neglecting higher order terms, we get:
T*=411,°-31,° (13)
Using (12) and (13) in 10 we have:
2 3
T U 0T _a 0T +£[laij +Q(r)(_|___|_w)_ 1 1160,T, (asz

“or roe r?oe® c,\ro®) rC, C, 12 3K | 002

(14)

. - o 1oy oy ,
Defining the dimensional stream function in the alsway such thatu, ——5 andug = _? and using the
r
following dimensionless variables:
Ugr T-T U’
=0,—>f(n), =J2uU . fln), 6ln)= 2 andN =,/—2f 15
n=0=10). v o (7). 6(n) T o 1) (15)
Substituting the expressions in (15) into (8), é3)d (14) we have:
f'+ff +Lh —Ha’f +G =0 (16)
Gh -4h-2f"=0 17
(3N, +4)8" +3PN, f6 +3¢N, P& +3EcP N, f“ =0 (18)
2 _ 2
Where: Ha = 2orBr) (r) .G, = ng’B(TWZ T°°), G= cY, , EC =Y ,
o, U, ru C,(T,-T.)
L:ﬁlwzer(r),R:pUCp,Nr: kkos.
v C Y, k 40,7,
With corresponding boundary conditions:
f(0)=0, f'0)=1, 6(0)=1  h(0)=0,
f'(0)=0, 6(00) =0, h(oo) =0. (19)

2.1. Adomian decomposition method

For the purpose of illustrating the method of Adamdecomposition we begin with the (deterministien F(u) =
g(t) whereF is a nonlinear ordinary differential operator wiitear and nonlinear items. We could representitiear
term Lu wherel is a linear operator. We write the linear tetmn+ Ru where we choosé as the highest-ordered
derivative. NowL™ is simplyn-fold integration for am™ order. The remainder of the linear operatat in case where
stochastic terms are present in linear operatorcaveinclude a stochastic operator t&m). The nonlinear term is
represented byu .Thus, Lu+Ru + Nu= g and we write L' L u = L' g-L'Ru —-L'Nu

for initial value problems we conveniently defibié :% as the n- fold definite integration operator frorto t. For the

dZ
operatoil = —, for example we have,

L Lu=u-u(0)—tu'(0)
U=u(0)+LYg— L Ru —L* Nu
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For the same operataquation but now considering a boundary value lprobwe letL™? be an indefinite integral and
write u = A+Bt for the first two terms and evaluate B from the given condition the first three terms mkentified as
u, in the assumed decomposition

U=Yn=0 Un

Finally, assumindNu is analytic, we write

NU= Y0 A (Ugeeene e, Up)

where the A4,, are specially generated Adomian polynomials fergpecific nonlinearity.
3.0 Method of solution

The nonlinear coupled differential equations (16)18) with boundary conditions (19) are solvedhgsihe ADM
methods.

If ADM is applied on (16) to (18) and we defineo\_1 = d 33 , and L, = d 22 , then
dn
L[f]= - ff —Lh'+Ha2f'—Gr6? (20)
L[h] = é(Zh +t) (21)
L[]= 1 (-3PN,ff -3¢N,PE-3ECPN, ") 22)
(3N, +4)
Applying inverse operator on equation (19) to (2&3,have
L L[ f]=-L[ff ]-L4[Lh]+L,"[Ha®f1-L,"[G,4] (23)
L, [h] = é L, feh+ 1) (24)
_ 1 1 , w2
L,'L[0]= ———— L, [(-3PN, fg - P.6-3ECP,.N, f 25
2 2[ ] (3Nr +4) 2 [( r r 3¢r\lr r r r )] ( )

From the boundary conditions and takifig (0) = ,h'(0) = ,and 8'(0) = y, where L, = III(.)d/]d/]dﬂ

andL,™ = jj(.)dl]dl]
The ADM solution is obtained by:

St @)=n+ L a - LY AL L I, T LY el - L6, Y 6,1 (29

2
Shi)=n8+=2L, 1y (o, + 1) @
n=0 n=0
0 (7) =1 1 3 LY=3PN.f.6 —3¢N.PO —3ECPN. f 28
nzo n(’]) +I7y+ (3Nr+4);)( 2 ( r r n-n 3¢\lr r=n r r'n )) ( )
where

Zm: f fy (29)
v=0
C=> it (30)
v=0
2

F.=> f 6\ (31)

=0
from (26) to (28) we have:

<

fo(’7)=/7+,7;a (32)
ho(7)= Bn (33)
6,(7)=1+m (34)
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For determination of other componentsb@), h(/]) and 6?(/7), we have:

> )= LD AL LD Lh T+ LD el - LG, D 6, (35)

m=0 m=0 m=0 m=0 m=0

i hn+l(,7) = é L2_l[i (2hn + fn)] (36)

n=0 n=0

[~ l 00 _ ' n2

z 8n+1(’7) = m Z( I-2 1[(_3Pr Nr fngn _3¢Nr I::‘ren _SECPr Nr fn )] ) (37)

n=0 r n=0

The general solutions are:

)= Y fl)=fo+ fu+ £, 4. (38)
m=0

h(7)= >, (7)=h, +h, +h, +... (39)
n=0

6(n)=73.6,07) =6, +6,+6, +... (40)

for conveniences, we used Maple-16 to computedhgisns and by Khedgt al. [14]
a=-0616542 £ =0355330 )= —0.249999.

4.0 Results and Discussion
The system of non-linear coupled ordinary diffef@néquations (16) to (18) with boundary conditidd®) has been
solved using the Adomian Decomposition method &edrésults are in good agreement with that obtaliyelhedret

al. [14]. The effects of the Physical parametéts, G, ,@, N, , P. and EC on the velocity profiles, micro rotations and
temperature distributions are shown in Figures 1-11

hom

o 0.5 1.5 2

F(m) 0.5 11;

| Ha—01 Ha=0.2 hHa=;J.3 Ha=0.4 |

i Figure 2: graph of micro rotatior(h(ﬂ)) against

Figure 1: graph of velocity profile (f (17)) n
againsty 10
075 i i i i 3 | @ =01 &, =0z . Fo=03 &, =0 4|

[ Ha=0.5 T — ey Ha=2 |
Figure 3: graph of temperature profile(H(ﬂ)) Figure 4: graph of velocity profile (f (’7))
against/7 against

Journal of the Nigerian Association of Mathematical Physics Volume 25 (November, 2013)109 — 116

113



A Convective MHD Flow of a Micropolar Fluid Pasi... Aiyesmi, Yusuf and Jiva Jof NAMP

025 100 7
1 0954
0.20 H
] 0.90
015+
085 1
010
0.20 4
005
0754
0 T T T T T T T T T 1 1] I DIE I DI4 I Dlﬁ I Dlg I ll
0 0z 04 0.6 0z 1 ’ : n ’ ’
n ——F,=05 P =1 F=15—7r,=1
——G,=0.1 G, =0.2 G, =03 ——G,=0.4

Figure 5: graph of micro rotatior(h(n)) against Figure 7: graph of temperature profile(H(/]))
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Figure 8: graph of temperature profile(H(ﬂ))

Figure 6: graph of temperature profile(H(n)) against]

against/]
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Figure 11: graph of temperature profi(eﬁ(l])) againsts

Figures 1 to 3 shows the effect of Hartmann nungfdd&) on the velocity profiles, micro rotation and
temperature profiles whete=0.2,G =2, P. = 005, and EC=15. The velocity profiles and micro

rotation decreases as Hartmann number increaseshantemperature profiles increases with increase i
Hartmann number. This is as a result of magnéid foresent, which has a tendency to produce g-lika
force called the Lorentz force that acts in theasije direction of the fluid’s motion.

Figures 4 to 6 presents the velocity profiles, oictation and temperature distribution for varieaties of

Grashof number whileL=02,G=2, P =005, and Ec=02,Ha=1,N, =1,9¢=0. It was

observed that velocity profiles decreases as tlast@&f number increases and the microrotation, testyre
distributions increases for increased in Grashaofilver.

Figures 7 to 8 shows the influence of prandtl nunibeECc = 0 and EC = 0.2 respectively, whileHa =1,
G=2,L=02, G =0,N, =1, ¢=0o0ntemperature profile; which shows that the terapee
increases as the prandtl number increase&forE O, and the rate at which temperature increasesiéosame
values of prandtl number dropped fic = 0.2.

Figure 9 shows that the variation of NusseMN,) whieHa=1,G=2, L=02, G =0,
P = 005,¢=0 and Ec = 0.2 has no significant effect on the temperature pesfi

Figures 10 to 11 shows the effect of heat generb’d;bsorption((ﬂ) on the temperature profiles while
Ha=1,G=2,L=02,G =0,P =005N, =1 and Ec= 0.2. In the graph the positive values
of @ represents the presence of heat generation anetjaive values represent absorption. It is ndtatas

@increases from negative to positive values, theperature as well as the thermal boundary layekiigiss

increases.
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4.0 Conclusion

The problem of convective MHD flow of a micropolfinid past a stretched permeable surface with textiawas
considered. The governing equations for this pmobhere transformed into cylindrical coordinate eyst The equation was
also transformed using the appropriate similatignsformations. The resulting similarity equatiovesre solved using the
Adomian Decomposition Method (ADM). Analytical euations were performed and the graphical resulte wbtained. It

was observed that as tHda increases, the velocity profile and the microiotatreduces, but enhances the temperature
distributions. We also observed that as (Ep increases the velocity profile reduces while theromotation and temperature
distribution increases.

Acknowledgements
We are very grateful to all the staff of Mathematand Statistics Department, Federal Universitff@¢hnology, Minna,
Niger State, Nigeria.

References

[1] Erigen A.C, Theory of micropolar fluids J. hamech. 16, pp.1-18, 1966.

[2] Cogley A.C., Vincent W.E., Gilles S.E. Diffargal approximation for radiation in a non-gray gasar equilibrium.
AIAAJ. 6:551-553, 1968.

[3] Hossain MA, Takhar Hs. Radiation effect on edxconvection along a vertical plate with uniforanface temperature,
Heat mass transfer 31:243-248, 1996.

[4] Makinde OD Free convection flow with thermaldiation and mass transfer past a moving vertioabys plate. Int.
comm. Heat mass transfer, 25:289-295, 2005.

[5] Satter M.D. A, Hamid M.D. K. Unsteady free smttion interaction with thermal radiation in a bdary layer flow past
a vertical porous plate. Jour. Math. Phys. Sci28€7, 1996.

[6] Das K, Jana S.Heat and mass transfer effectsnsteady MHD free convection flow near a movingtical plate in a
porous medium. Bull. Soc. Banja luka 17:15-32, 2010

[7] Olajuwon. B.l. Convection heat and mass trangfi a hydromagnetic flow of a second Grade finidhe presence of
thermal radiation and thermal diffusion. Int. comrheat and mass 38:377-382, 2008.

[8] Haque Md Z, Alam Md M, Ferdows M, Postelnicu Micropolar fluid behaviours on steady MHD freengection flow
and mass transfer with constant heat and masssfljele heating and viscous dissipation. J.KingdSdniv. Engg.
Sci doi:10.1016/j.jksues.2011.02.003, 2011.

[9] M.A.A. Mahmoud, Thermal radiation effects on NMdHlow of a micropolar fluid over a Stretching sacé with variable
thermal conductivityPhysica A, 375, pp. 401-410, 2007.

[10] M. Aouadi, Numerical study for micropolaofl over a stretching she@opmp. Mater. i, 38, pp. 774-780, 2007.

[11] Srinivasacharya.D., Ramreddy. C.,Soret andoDufeffect on mixed convection in a non-Darcy parauedium
saturated with micropolar fluid, Non-analysis mdidgl and control, vol.16,No.1, 100-115,2011.

[12] B.I. Olajuwon and J.I. Oahimire, Unsteady Ff@envection Heat and Mass Transfer in MHD Micropdttuid in the
Presence Of Thermo Diffusion and Thermal Radiatioternational Journal of Pure and Applied Mathematics,
Volume 84: No 2. 15-37, 2013.

[13] J. . Oahimire, B. I. Olajuwonl, M. A Walieénd I. O. Abiala, Analytical solution to MHD migpolar fluid flow
past a vertical plate in a slipflow regime in theegence of thermaldiffusion and thermal radiatidowrnal of the
Nigerian Mathematical Society Vol. 32, Pp. 33-6012.

[14] M.-E.M. Khedr, A. J. Chamkha, M. Bayomi, NIH-low of a Micropolar Fluid past a Stretched Peabie Surface
with Heat Generation or Absorption, Nonlinear Arsady Modelling and Control, Vol. 14: No. 1, 27-£2009.

[15] H.AM. El-Arabawy, Effect of suction/inj&on on the flow of a micropolar fluid past a cantously moving plate in
the presence of radiatiomt. J. Heat Mass Tran., 46, pp. 1471-1477, 2003.

Journal of the Nigerian Association of Mathematical Physics Volume 25 (November, 2013)109 — 116

116



