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                       Abstract 
 
MHD flow of a micropolar fluid past a stretched permeable surface with heat 

generation or absorption was considered in this work. The governing partial 
differential equations were transformed into their equivalent cylindrical coordinate 
system from its original form (rectangular form). A set of similarity parameters are 
employed to convert the governing partial differential equations to ordinary differential 
equations. The obtained self-similar equations are solved using the Adomian 
Decomposition Method. The effect of various physical parameters on the velocity 
profile, microrotation and temperature distribution were investigated. The obtained 

results shows that as the Hartmann number ( Ha ) increase the velocity profile and 
the microrotation reduce while the temperature profile increases.  
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1.0    Introduction 

Micropolar fluids are subset of the micromorphic fluid theory introduced in a pioneering paper by Eringen[1]. 
Micropolar fluids are those fluids consisting of randomly oriented particles suspended in a viscous medium, which can 
undergo a rotation that can affect the hydrodynamics of the flow, making it a distinctly non- Newtonian fluid. They 
constitute an important branch of non-Newtonian fluid dynamics where microrotation effects as well as microinertia are 
exhibited. Eringen's theory has provided a good model for studying a number of complicated fluids, such as colloidal 
fluids, polymeric fluids and blood. The effects of radiation on unsteady free convection flow and heat transfer problem 
have become more important industrially. At high operating temperature, radiation effect can be quite significant. Many 
processes in engineering areas occur at high temperature and knowledge of radiation heat transfer becomes very 
important for design of reliable equipments, nuclear plants, gas turbines and various propulsion devices or aircraft, 
missiles, satellites and space vehicles. Based on these applications, Cogley et al.[2] showed that in the optically thin 
limit, the fluid does not absorb its own emitted radiation but the fluid does absorb radiation emitted by the boundaries. 
Hossain and Takhar[3] have considered the radiation effects on mixed convection boundary layer flow of an optically 
dense viscous incompressible fluid along a vertical plate with uniform surface temperature. Makinde[4] examined the 
transient free convection interaction with thermal radiation of an absorbing emitting fuid along moving vertical 
permeable plate. Satter and Hamid[5] investigated the unsteady free convection interaction with thermal radiation of an 
absorbing emitting plate. Heat and mass transfer effects on unsteady magneto hydrodynamics free convection flow near a 
moving vertical plate embedded in a porous medium was presented by Das and Jana[6]. Olajuwon[7] examine 
convection heat and mass transfer in a hydromagnetic flow of a second grade fluid past a semi-infinite stretching sheet in 
the presence of thermal radiation and thermal diffusion. Haque et al.[8] studied micropolar fluid behavior on steady 
magneto hydrodynamics free convection flow and mass transfer through a porous medium with heat and mass fluxes. 
Mahmoud [9] considered thermal radiation effects on MHD flow of a micropolar fluid over a stretching surface with 
variable thermal conductivity. Aouadi [10] reported a numerical study for micropolar flow over a stretching sheet. Soret 
and dufour effects on mixed convection in a non- Darcy porous medium saturated with micropolar fluid was studied by 
Srinivascharya[11]. Olajuwon et,al.[12] investigated the effects of thermo-diffusion and thermal radiation on unsteady 
heat and mass transfer of free convective MHD micropolar fluid flow bounded by a semi- infinite porous plate in a 
rotating frame under the action of transverse magnetic field with suction. Oahimire et al[13] investigated  the effects of 
thermal-diffusion and thermal radiation on unsteady heat and mass transfer by free convective MHD micropolar fluid 
flow bounded by a semi- infinite vertical plate in a slip flow regime under the action of transverse magnetic field with 
suction. The results shows that the observed parameters have significance influence on the flow, heat and mass transfer. 
Kedr et al[14] considers steady, laminar, MHD flow of a micropolar fluid past a stretched semi-infinite, vertical and 
permeable surface in the presence of temperature dependent heat generation or absorption, magnetic field and thermal 
radiation effects. 
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To the best of our knowledge, the use of Adomian Decomposition method to obtain the solution of a convective 

MHD flow of a micropolar  fluid past a stretched permeable surface with radiation has remained unexplored. The 
objective of the current work is to study the effect of various parameters that may occur on the velocity profile, 
microrotation and temperature profile.   

 
2.0 Problem Formulation 

Consider steady, laminar, convective, MHD boundary –layer flow of a micro polar fluid past a permeable uniformly 
stretched semi-infinite vertical plate in the presence of heat generation or absorption, thermal radiation and viscous 
dissipation effects. The fluid is assumed to be viscous and has constant properties. The applied magnetic field is assumed 
to be constant and the magnetic Reynolds number is assumed to be small so that the induced magnetic field is neglected. 
No electric field is assumed to exist and the hall effect of magneto hydrodynamics is neglected.  

The governing boundary-layer equations may be written as follows: 
Continuity equation: 
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Angular momentum: 
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Energy equation: 
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Subject to boundary conditions: 

:0=y  
,0xUu =
    ,0=v   

,wTT =
  ,0=N      

,0: →∞→ uy         ∞→ TT     ,0→N                                                                            (5)  

where ( )xB  magnetic induction, pC  specific heat at constant pressure, ( )xQ   heat generation or absorption coefficient, 

Ec  Eckert number, f dimensionless stream function, rq   radiative heat flux, T temperature at any point, wT  wall 

temperature, Ha Hartmann number, ∞T   free stream temperature, oU  stretching velocity,v  normal or y-component of 

velocity, x distance along the plate, y distance normal to the plate, 1G  is the microrotation constant, ρ is the fluid 

density, 1k   is the coupling constant, α  molecular thermal diffusivity, υ  fluid apparent kinematic viscosity, φ  

dimensionless heat generation or absorption parameter, σ fluid electrical conductivity, ψ   stream function, u  is the 

tangential or x-component of velocity,  N is the angular velocity or microrotation, g is the acceleration due to gravity, 

β  is the volumetric coefficient of thermal expansion, θ  is the dimensionless temperature, h is the dimensionless 

microrotation.     
   
In other to transform our equations into cylindrical coordinate, we introduce the following transforms: 

Θ= cosrx ,  Θ= sinry , ruu → , Θ→ uv  
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Substituting (6) into (1) to (5) we have the following: 
Continuity equation: 
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Momentum equation: 
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Angular momentum equation: 
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 Energy equation: 
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rUur 0:0 ==Θ ,             0=Θu ,             wTT = ,                 ,0=N      

,0: →∞→Θ ru              ,∞→ TT      ,0→N                                                                         (11)  

Using the Rosseland approximation and following El-Arabawy [15], the radiative heat flux is given by: 
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Where 0σ  is the Stefan-Boltzmann constant and *k  is the mean absorption coefficient. The temperature differences 

within the fluid is assumed sufficiently small such that 4T  may be expressed as a linear function of temperature. 

Expanding 4T   in a Taylors series about ∞T  and neglecting higher order terms, we get: 

 
434 34 ∞∞ −= TTTT                                                                                                                    (13) 

Using  (12) and (13) in 10 we have: 
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Defining the dimensional stream function in the usual way such that 
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following dimensionless variables: 
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Substituting the expressions in (15) into (8), (9), and (14) we have:  
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With corresponding boundary conditions: 
  ( ) ,00 =f               ( ) ,10' =f         ( ) ,10 =θ         ( ) ,00 =h                   

  ( ) ,0' =∞f                      ( ) ,0=∞θ             ( ) .0=∞h                                                               (19)        

2.1.  Adomian decomposition method 
For the purpose of illustrating the method of Adomian decomposition we begin with the (deterministic) form ���� =
�(t) where � is a nonlinear ordinary differential operator with linear and nonlinear items. We could represent the linear 
term �� where	� is a linear operator. We write the linear term �� + 
� where we choose �	as the highest-ordered 
derivative. Now �-1 is simply �-fold integration for an �th order. The remainder of the linear operator is 
 (in case where 
stochastic terms are present in linear operator, we can include a stochastic operator term	
� ). The nonlinear term is 
represented by	�� .Thus, �� + 
� + ��= � and we write �-1 � � = �-1 g−�-1	
� −�-1	��                                                                                   

for initial value problems we conveniently define	�-1	 =	
��

���
 as the n- fold definite integration operator from 0 to t. For the 

operator � =
��

���
, for example we have, 

�-1 � � =	� – �� 0)−��′	(	0)                                                                                               
∴    �= �� 0) + �-1 g−	�-1	
�  −�-1	��     
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For the same operator	 equation but now considering a boundary value problem, we let 	�-1  be an indefinite integral and 
write � = �+�� for the first two terms and evaluate	� , � from the given condition the first three terms are identified as 
�� in the assumed decomposition 

U=∑ ��
∞

���                                                                                                                                               

Finally, assuming Nu is analytic, we write  

Nu = ∑ ��
∞
��� (��……………………………���                                                                                               

where the   �� are specially generated Adomian polynomials for the specific nonlinearity. 

3.0 Method of solution 

   The nonlinear coupled differential equations (16) to (18) with boundary conditions (19) are solved using the ADM 
methods.                         

If ADM is applied on (16) to (18) and we defined    
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 The ADM solution is obtained by: 
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from (26) to (28) we have: 
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For determination of  other components of ( )ηf , ( )ηh  and ( )ηθ , we have: 
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The general solutions are: 
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for conveniences, we used Maple-16 to compute the solutions and by Khedr et al. [14] 

616542.0−=α ,   355330.0=β , 249999.0−=γ . 

4.0 Results and Discussion 
The system of non-linear coupled ordinary differential equations (16) to (18) with boundary conditions (19) has been 
solved using the Adomian Decomposition method and the results are in good agreement with that obtained by Khedr et 

al. [14]. The effects of the Physical parameters rrr PNGHa ,,,, φ  and Ec  on the velocity profiles, micro rotations and 

temperature distributions are shown in Figures 1-11. 

 

Figure 1: graph of velocity profile  ( )( )η'f   

againstη  
 

 
Figure 3: graph of temperature profile  ( )( )ηθ   

against η  

 
 

 

Figure 2: graph of micro rotation  ( )( )ηh   against
η  

 
 

Figure 4: graph of velocity profile  ( )( )η'f   

against η  
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Figure 5: graph of micro rotation  ( )( )ηh   against 
η  

 

Figure 6: graph of temperature profile  ( )( )ηθ   

against η  
 

 

Figure 7: graph of temperature profile  ( )( )ηθ   

against η  

 

Figure 8: graph of temperature profile  ( )( )ηθ   

against η  
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Figure 9: graph of temperature profile  ( )( )ηθ   

against η  

Figure 10: graph of temperature profile  ( )( )ηθ   

against η  

 
Figure 11: graph of temperature profile  ( )( )ηθ   against η  

 
Figures 1 to 3 shows the effect of Hartmann number ( Ha ) on the velocity profiles, micro rotation and 

temperature profiles where 2.0=L , 2=G , 05.0=rP , and 5.1=Ec . The velocity profiles and micro 

rotation decreases as Hartmann number increases and the temperature profiles increases with increase in 
Hartmann number.  This is as a result of magnetic field present, which has a tendency to produce a drag-like 
force called the Lorentz force that acts in the opposite direction of the fluid’s motion. 

Figures 4 to 6 presents the velocity profiles, microrotation and temperature distribution for various values of 

Grashof number while 2.0=L , 2=G , 05.0=rP , and 2.0=Ec , 1=Ha , 1=rN , 0=φ . It was 

observed that velocity profiles decreases as the Grashof number increases and the microrotation, temperature 
distributions increases for increased in Grashof number. 
Figures 7 to 8 shows the influence of prandtl number for 0=Ec and 2.0=Ec respectively, while 1=Ha ,

2=G , 2.0=L , 0=rG , 1=rN , 0=φ on temperature profile; which shows that the temperature 

increases as the prandtl number increases for 0=Ec , and the rate at which temperature increases for the same 

values of prandtl number  dropped for 2.0=Ec . 

Figure 9 shows that the variation of Nusselt (rN ) while 1=Ha , 2=G , 2.0=L , 0=rG ,

05.0=rP , 0=φ  and 2.0=Ec  has no significant effect on the temperature profiles. 

Figures 10 to 11 shows the effect of heat generation/ absorption ( )φ  on the temperature profiles while

1=Ha , 2=G , 2.0=L , 0=rG , 05.0=rP , 1=rN  and 2.0=Ec . In the graph the positive values 

of φ  represents the presence of heat generation and the negative values represent absorption. It is noted that as 

φ increases from negative to positive values, the temperature as well as the thermal boundary layer thickness 

increases. 
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4.0  Conclusion 
The problem of convective MHD flow of a micropolar fluid past a stretched permeable surface with radiation was 

considered. The governing equations for this problem were transformed into cylindrical coordinate system. The equation was 
also transformed using the appropriate similarity transformations. The resulting similarity equations were solved using the 
Adomian Decomposition Method (ADM). Analytical evaluations were performed and the graphical results were obtained.  It 
was observed that as the Ha  increases, the velocity profile and the microrotation reduces, but enhances the temperature 

distributions. We also observed that as the rG  increases the velocity profile reduces while the microrotation and temperature 

distribution increases. 
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