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                       Abstract 
 

This paper investigates the effect of viscosity and thermal conductivity on 
magnetohydrodynamic two-phase flow under optically thick limit radiation in which an 
open-ended vertical channel is taken as the domain and the boundary is given as -1< ξ <1. 
The solutions for temperature, velocity and the induced magnetic field for both gas and 
liquid were obtained, in the optically thick limit radiation using the method of successive 
approximation. The Continuity, Momentum and Energy equations were formulated, non-
dimensionalized and solved. We observed that increase in radiation parameter for gas and 
liquid increase the rate of heat transfer to the fluid (gas and liquid) and this leads to an 
increase in temperature. Also increase in velocity for gas and liquid decrease as the 
radiation parameter increases. It was also observed that an increase in radiation parameter 
causes an increase in the flow rate of both gas and liquid. 
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1.0    Introduction 

The subject of two-phase gas-liquid (or, in general, multiphase) flow is increasingly important in engineering design and 
technology, particularly for the processing industries such as oil and gas pipelines and nuclear technology. Further, 
applications of two-phase flow are relevant not only to engineering and modern scientific problems, but also to natural 
phenomena, and hence, requires additional investigation [1 – 29]. 

Research on the flow of an electrically conducting fluid by electromagnetic field in a vertical channel is recently of much 
interest, due to its importance in the design of magneto hydrodynamic generators, shock tubes or cross-field accelerators and 
pumps. 

Various studies have been carried out in this area, notable among them are analysis of forced convection heat transfer to 
an electrically conductivity liquid flowing through a vertical channel with transverse magnetic field [1, 5, 8]. The limitation 
of the above studies is that they do not take into account heat transfer by radiation which will be significant when we are 
concerned with space application and higher operating temperatures. 

Gupta and Gupta considered the radiation effect on hydro magnetic convection in a vertical channel in the optically thin 
limit case. They obtained analytic solution for temperature, velocity and induced magnetic field [2]. 

The analysis in [10] provided an improvement by finding the effects of variable parameters on magnetohydrodynamic 
two-phase flow under an optically thin limit radiation. In spite of that, in this paper we investigate the effects of viscosity and 
thermal conductivity on magnetohydrodynamic two-phase flow under optically thick limit radiation. 

Suneetha et al [3] worked on the magnetohydrodynamic two-phase fluid flow which has engaged the attention of a 
number of researchers. They worked on the thermal radiation effect on hydromagnetic free convection flow past an 
impulsively started vertical plate with variable surface temperature and concentration, taking into account the heat due to 
viscous dissipation. A parametric study was performed to liberate the influence of radiation parameter, magnetic parameter, 
Grashof  number, Prandtl number, ‘Eckert number on the velocity, temperature and concentration profiles. The numerical 
result reveals that an increase in thermal radiation reduces both the rise in viscous dissipation and acceleration of the flow. 

Dulal Pal and Mondal worked on Hydromagnetic non-Darcy flow and heat transfer over a stretching sheet in the 
presence of thermal radiation and ohmic dissipation[4]. 
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Stamenkovic et al considered MHD flow and heat transfer of two immiscible fluids between moving plates [7]. The 

partial differential equations governing the flow and heat transfer are solved analytically with appropriate boundary 
conditions for each fluid. They observed that decrease in magnetic field inclination angle flattens out the velocity and 
temperature profiles. Increase in Hartmann number, velocity gradients, temperature in the middle of the channel decreases 
and near the plate’s increases. Induced magnetic field is evidently suppressed with an increase of the Hartmann number.   

Also, Chauhan and Rastogn worked on radiation effect on natural convection MHD flow in a rotating vertical porous 
channel partially filled with a porous medium [6]. The two infinite vertical porous plates of the channel are subjected to a 
constant injection velocity at the one plate and the same constant suction velocity at the other plate. 

Rajesh worked on the effect of a uniform transverse magnetic field in the free convection flow of an electrically 
conducting fluid past an uniformly accelerated infinite, vertical porous plate through a porous medium. Expressions for the 
velocity field and skin friction are obtained by the Laplace transform technique [12].  

Israel Cookey worked on the combined effects of thermal radiation and transverse magnetic field on steady flow of 
electrically conducting optically thin fluid through a horizontal channel filled with saturated porous medium and non-uniform 
wall temperature [15].  

Ansari and Ghiasi worked on the hydrodynamical instability initial criterion in two phase stratified flow in a horizontal 
duct [9]. The non linear two mass and two momentum, conservation equations are used for numerical simulation using the 
two-phase, two-fluid model. The model was  solved using finite volume and spectral methods respectively.  

Also,  Zeidan worked on the numerical resolution for a compressible two-phase flow model based on the theory of 
thermodynamically, compatible systems. The equations constitute a non homogeneous system of non linear hyperbolic 
conservation laws [11]. 

Jyothi Bala and Varma studied the unsteady MHD heat and mass transfer flow past a semi-infinite vertical porous 
moving plate with variable suction in the presence of heat generation and homogenous chemical reaction [13]. They analyzed 
the effect of magnetic field and heat and mass transfer on unsteady two dimensional laminar flow of a viscous incompressible 
electrically conducting fluid past a semi infinite moving  vertical porous plate under the  influence of a uniform transverse 
magnetic field with temperature dependent heat  generation and homogenous first order chemical reaction. The analytical 
expression for the velocity, temperature and mass concentration are obtained. The effects of material parameters like Grashof 
number for heat transfer, Grashof number for mass transfer, Prandtl number, Magnetic parameter, permeability parameter, 
Schmidt number and chemical reaction parameters on velocity, temperature and  mass concentration are discussed through 
graphs. 

Anuar Ishak worked on the effect of radiation on magnetohydrodynamic (MHD) boundary layer flow of a viscous fluid 
over an exponentially stretching sheet [14]. The governing system of partial differential equations was transformed into 
ordinary differential equation before being solved numerically by an implicit finite- difference method. 

Usman et al worked on the effect of variable parameters on magnetohydrodynamic two-phase flow under optically thin 
limit radiation in which an open ended vertical channel was taken as the domain in the interval -1 < ξ < 1. The solution for 
temperature of the liquid and gas, velocity of both liquid and gas and the induced magnetic field for liquid and gas were 
obtained in the optically thin limit radiation using the method of successive approximation [10]. 

In [10], the Continuity equation, the Momentum equation and the Energy equation were developed to study the radiation 
heat flux. Increase in radiation parameter for liquid and gas was found to increase the rate of heat transfer to the fluid (liquid 
and gas) and it led to a decrease in temperature. It was also verified that the velocity for gas and liquid decreases as the 
radiation parameter increases. Further, it was also found that increase in the’ Hartmann number for both liquid and gas, led to 
decrease in radiation parameters. Likewise they also observed that an increase in radiation parameter caused an increase in 
the flow rate for both liquid and gas. 

In this paper, the work in [10] is first reviewed by taking optically thick limit radiation to replace the thin limit radiation 
of the previous study. The steady flow was, taken into consideration and all the parameters were varied, using the same 
boundary condition.  

 
2.0 Formulation of the Problem 

This project investigates the effect of viscosity and thermal conductivity on magnetohydrodynamic two-phase flow under 
optically thick limit radiation. In the two-phase flow it is expected that there will he laminar flow or turbulent flow according 
to the Reynolds number of the flow since we have two different kinds of fluid [gas and liquid]. The Reynolds number of the 
gas will be different from that of the liquid. 

Two-phase flow can be classified into the following 
(a) Liquid-Gas flow 
(b) Liquid-solid flow 
(c) Gas-plasma flow 
(d) Plasma-solid flow 
(e) Gas-plasma flow which is the mixture of different gases. 
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The study further focuses attention on the situation when the liquid and the gas are of the same substance and are being 

mixed homogeneously under the same temperature. 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.0: 3 – Dimensional Fluid Flow diagram

 

 
We consider two-phase magnetohydrodyanamic flow under optical thick limit radiation of an electrically conducting 

fluid (Liquid and gas) flowing inside an infinite vertical channel., permeated by uniform transverse magnetic field, formed by 
two parallel plates of distance 2L apart. (See Fig 1.0). 

The diagram above consists of a vertical channel formed by two parallel plates of distance 2L. The origin is taken as the 
centre of the channel and we also assumed that uniform magnetic field B0 acts transversely to the plates. Since the channel is 
long and for the fact that the fully developed laminar flow in a uniform magnetic field is considered and we also take into 
consideration the asymptotic flow valid far away from the end of the channel, thus all the physical variables except 
temperature and pressure are functions of Y, Y being the horizontal coordinate normal to the plate. 

In optically thick limit radiation according to [14] the radiation flux vector is given as 
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The continuity equation for the liquid is given as  
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3.0 Momentum Equation  

The momentum equation for gas and liquid respectively are given in terms of components as:  
In X – component, we have  
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In Y – component, we have  
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In Z – component, we have  
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where ,, yx BB  and zB  are the body forces in ,,YX  and Z directions respectively WVU ,,  are the 

velocity components, while P  and ρ  are pressure and density respectively.  

Since the channel width is constant, then all derivatives along x goes to zero, therefore (11a) and equation 
(11b) can be reduced to  

Dt

DVg
gρ = 

)(gyB  

y

pg

∂
∂

+ )13()( aUUK gLLg −  

Dt

DV L
lρ  

)(lyB  +
∂
∂

y

PL  )13()( bUUK LgLg −  

where LgLg KK =  is the friction coefficient between the gas and the liquid which gives the interaction 

force between them. For steady flow and neglecting the channel porosity such that injection from above and suction 
below is neglected then we have 
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Likewise the liquid equation becomes  
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 where θ1 –  is the temperature difference 
  β – is the volume of coefficient expansion 
  BL – for liquid 
  Bg – for gas 

 
Substitute equation (15a) and equation (15b) into equation (14a) and equation (14b) respectively, we have. 
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likewise for the liquid i.e substituting equation (15b) into equation (14b)  
We have; 
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4.0 Energy Equation  
The conservation of energy equation is given by  
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where TL = Tg = T 
T  - Is the temperature inside the fluid 
K - Is the variable thermal conductivity parameter 

gρ  - is the density of gas 

Lρ  - is the density for the liquid 

Cp  - is the specific heat at constant pressure and 
qR  - is the radiative heat flux 
 

Since there is no variation along x – direction, then we have  
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By virtue of the definition of T in equation (2) and for the fact that the flow is  steady flow,  
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In the optically thick limit, the flow absorbs its own emitted radiation. This implies that there is self 
absorption. 

The thermal radiation heat flux relation is given as: 
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Where  σ- is the Stefan boltzman constant 

K- is the Roseland mean absorption coefficient.  
Then, equation (21) can be linearized by expanding T into the Taylor series about T∞ and neglecting higher 
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Substitute equation (23) into equation (20) we have  
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5.0 Magnetic Induction Equation 
By using Maxwell’s equations and ohm’s law which connect the electric field with current density, we can obtain the 

magnetic equation for both gas and liquid respectively as. 
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Where, 
Bg — is the induced magnetic field for gas 
BL — is the induced magnetic field for liquid 
B0 - is the applied magnetic field. 
σ _ is the electrical conductivity. 
µg  __ is the magnetic permeability for gas 
µL -  is the magnetic permeability for liquid. 

Henceforth, thermal conductivity and viscosity are treated as variable parameters that is 
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We incorporate into the momentum equation for gas and momentum equation for liquid, the magnetic body force in 
addition to the body force due to gravity in the Y and Z directions yielding 
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Eliminating the pressure terms in equation (16a and 16b) we integrate equation (16a) with respect to y, we have; 
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       Differentiating the above equation (3.27) with respect to Z we have, 
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Which is the pressure force in Z direction substituting equation  (28) into the momentum equation (16a) we have 
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We can see clearly in equation (29) that the right side is a function of Z only while the left hand side is a function of y 
only. As a result the right hand side can be represented by a constant C1 as shown in the next equation. 
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211
1 )1(

. C
E

dy

Wgd
g
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dWg
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d

g
g

dy

dBB

g

T

g

gg

gg

o =+++++
ρ

µ
ρ

αθθα
ρ
µ

βθ
ρµ

 (30) 

The following non-dimensional quantities are introduced. 

δ
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g
gg

g

o
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L

y
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o

g
g B
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2
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=
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ρ
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gmgP δδµ=    = the magnetic prandt Number for gas 

g
mg

Lg
R

δµ
βµ 4=  = Raleigh Number for gas 
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L

y ξξ ===  

ξ
ξ

ξ d

d
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d

d

d
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d 1
. ==  

2

2

22

2 1
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d
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E
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g
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g
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g

g

g

g

g
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ρ

µ
ρ
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( ) ( ) ( ) ( )
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2
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d
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g

g
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ρξ
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ρ
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α
ρ
µ

β
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( )
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2
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2 1.
.. C

E

d
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d
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L
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d
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L
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g
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g

g

g
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ρ

α
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µ
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L

Lt

d

Vd

LL

N
NLtg

d
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β
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Multiply through by ,
3

g

g L

δµ
ρ

 we have   

1

22

2

2

2

2222

.. C
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d
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d
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NL

tgBL

d

dbLBo

g

g

g

Tgggg

g

gg

gg

==+−+−−
δµ

ρ
δµξ

α
ξξξ

α
µδ

ρ
ξµδµδ
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But gg

g
V

L

M
B ρ

δ 2

2
2

0 = and gag VRgBNL δ=4
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2
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ξξξ
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ρ
d
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d
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1
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C
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g

g

g

T
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=+  

But ,gFLN =α  and 
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g
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V
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µ
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1
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2
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d
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g

g

g
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g
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g
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=+−+−−  

( ) 1
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2

2

3
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d
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d
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g

g
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g

g
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Let  1
3

2 CLC gρ=  

We have  
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d
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g

g
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Multiply through by 
oB

L2

  

We have 

0
2

2

=+
ξ

σδµ
ξ d

dV

d

bd g
g

g
 

Let gmgP δµ=  

0
2

2

=+
ξ

σ
ξ d
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P

d

bd g
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Divide through by Pmg  

0
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2
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ξ

σ
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d
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P
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Let 1=σ  
We have 

0
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dV

d
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P
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        (31) 
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Multiply through by ,
N

L

δ
 we have 
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Multiply through by  

( ) tE
d

td
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d
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FV nggg −−−+







=
2

22

1
ξξ

 

 
N

L
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Where 

g
ng C

CL
ELNF

ρδ
α

ρ

2
, ==  

Thus we have the following set of equations to be solved 
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T
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d
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P

M
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2

3
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1. =+−++−−  (33) 
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0
1

2

2
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ξξ d

dV

d
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P
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        (34) 

( ) tE
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FV ngg

g
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=

2

2
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Where 

gg

n
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g
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E
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δ
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3

2
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The boundary conditions for velocity and temperature are: 

( ) ( ) 0== ξξ TVg  at 1±ξ  

( ) 0=ξgb  at 1±=ξ  

 

 
 
6.0 Analysis:- 

By integrating equation (34), we have 

0
1
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2
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ξξ d

dV

d
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P
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mg

  (Integration) 

3

1
CV

d
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P g
g
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 (Where C3 is the constant of integration 
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3

3

1
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Which implies that 
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P
CV g
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g

1
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Putting equation (36) into equation  (35) we have 
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Making the substitution 
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3 1
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P
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Differentiate equation (36) and put the result into equation (33) and we get. 
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Make the substitution into, equation (33) 
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 the subject of the formula from equation (35) and put the result into equation (37) we get from 

equation (36) 
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substitute equation (38) into equation (37) 
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Equation (40) can be written as 
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3
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Where 

3
2

24 CMCC g−=         (41) 

Equations (35) and (36) also become, 

g

mg
g b

P
CV 1

3

1−= (42) 

( ) ( ) g

mg
ngggg b

P
CtEtFttF 1

3

2111 1
1 −=−+−      (43) 

Respectively. 
Now by ignoring the non-linear term in the equation (41) we have. 

( ) ( )
g

T
gagngg

EL
CtRCEMgttFgM

δµ

3

43
2112 1 −−+−−    (44) 

Therefore equations (42), (43) and (44) are subject to the boundary conditions. 
0=== bVt  at 1±=ξ  

NOTE:  The subscript g denotes gas. We shall replace it with the subscript L to denote liquid in the same pattern. 
 

7.0 Method of Solution 
We use the method of successive approximation to solve the differential equations (45); (46) and 47) for gas and for 

liquid. 
The required equations to be solved for in case of gas are; 

( ) ( )
g

T
gngaggg

EL
CtEMRCttFgM

δµ

3

4
2

3
112 1 −=−−−     (45) 

( ) ( ) −−=−+−
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g

gngggg P

b
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1
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21111      (46) 

g

mg
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P
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1−= (47) 

Solving equation (45) we have 
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4
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3
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The equation becomes 

( ) ( ) 5
2

3
112 1 CtEMRCgttFM gngaggg =−−−      (48) 

Where, 

g

TEL
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δµ

3

45 −=  

To solve for the complementary solution, we have, 
 

Journal of the Nigerian Association of Mathematical Physics Volume 25 (November, 2013), 81 – 108            



95 

 

The Effect of Viscosity and Thermal Conductivity on…    Usman  and  Onitilo    J of  NAMP 
 

( ) ( ) 01 2
3

112 =−−− gngagggg tEMRCttFM      (49) 

 

( ) ( ) gngagggg tEMRCttFM 2
3

112 1 −−−  

Let     gt1  = A    
ξ

1em  

 gt1  = A   m  ξem  

 gt1  = A   2m  ξem  

Then substitute into equation (49) we have 
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Divide both sides by A e
ξm we have 
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Therefore; 
ξξ

221
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ic eaeat +=  

To get the particular solution. i.e tip 

Let Ct ip =  

011 =pt   and 0111 =pt  

Substitute into the equation above, we have 

( )( ) ( ) 5
2

3
2 _01 CCEMRCtFM ngaggg =−−  

We have 
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2
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C
C

2
3

5

_
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Therefore the general solution is 

( )ngag

mm
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C
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2
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5
2211 _

−+= ξξ       (50) 

Applying the boundary conditions, t1g = 0 at ξ = ± 1 and solve the two equations simultaneously, we have 
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3

5
2211 =−+−

ngag
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C
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5
2211 =−+ −−

ngag

mm

EMRC

C
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Let K = ( )ngag EMRC

C
2

3

5

_
 

 
Then the equations (51) and (52) become 

02211 =−+ keaea mm        (53) 

02211 =−+ −− keaea mm        (54) 

from equation (53) we have 
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Substitute equation (55) into equation (44), we have 
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Substitute the value of a2 into equation (55) 
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Differentiating equation (50) twice we have: 
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Substitute equation (55b) into equation (46) we have  
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Integrate equation (56) and use the boundary condition b = 0 at ξ = 1 to obtain the constant of integration.  The 
integration gives,   
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Therefore substitute 0=b  and 1=ξ  into equation (57) to get the constant of integration C6. We have 
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Hence, 
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To get gV1 , we differentiate equation (60) above and substitute it into equation (47). 

The differentiation gives. 
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Now to solve for equation (41) we differentiate equation (60) thrice and equation (50) once, then substitute into equation (41) 
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The complementary equation becomes 
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The particular equation is 

++++= + ξξξξξ )( 2128172
2

61
2

52
mm

g
mmmm

p eaeaeaeaeat  

14
)2(

13
)

21
2(

122
3

111
3

10
21 aeaeaeaea mmmmmm ξξξξ ++ +++                    (64) 

we differentiate equation (64) twice and substitute into the LHS of equation (41) we have 
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Now make the substitution into equation (41) 
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Now comparing the coefficient of the exponential terms in equations (62) and (65); we have 
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Hence, 
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The complete approximate solution for tg is obtained by adding t1g and t2g together and obtain. 

++++++

+++++−+=
++ ξξξξξξ

ξξξξξξ

)
21

2(
122

3
111

3
10

)
21

(
92827

2
2

61
2

52413722112

mmmmmmmm

mmmmmm
g

eaeaeaeaeaea

eaeaeaeaCeaeat
 

14
)22

1
(

13 aea g
mm ++

            (67) 

 Which implies that 

92
2

61
2

52421731 ()( aeaeaeaaeaaat mmmm
g ++++++++= ξξξξ

 

7
14)

2
2

1
(

13
)

2
2

2
2(

122
3

111
3

10
)

21
( Caeaeaeaeae mmmmmmmm −+++++ +++ ξξξξξ

  (68) 

 
Journal of the Nigerian Association of Mathematical Physics Volume 25 (November, 2013), 81 – 108            

14
)

2
2

1
(

13
)

21
2

122
3

111
3

10
)

21
(

28172
2

61
2

524132

aeaeaeaeaea

eaeaeaeaeaeat

mmmmmmmm
a

mmmmmm
g

+++++

++++++=

+++ ξξξξ

ξξξξξξ

ξ



102 

 

The Effect of Viscosity and Thermal Conductivity on…    Usman  and  Onitilo    J of  NAMP 
 

Likewise with simplification, we obtain b2g as 
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The complete approximate solution of the magnetic field for gas will be 
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To get V2g, we differentiate equation (63) and substitute into equation (47) 
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Substitute the above equation into equation (47) 
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Thus the velocity for gas (Vg) becomes 
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Similarly, following the same method of solution of that of gas and we have that of liquid becoming. 
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8.0 Determination of the Temperature Profile 
 The temperature profile for gas and liquid is obtained by evaluating equation (68) and equation (75). 
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9.0 Determination of the Velocity Profile 
 The velocity profile for gas and liquid is given by equation (74) and equation (77). 
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10.0 The Induced Magnetic Field for Gas and Liquid 
 The induced magnetic field for gas and liquid is given by equation (71) and equation (76). 
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The constants 3C and 5C  are obtained by using the boundary condition 
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Figure 1: Effect of Viscosity on Temperature for Gas (M = Hartman number) 
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Figure 2: Effect of Viscosity on Temperature for liquid (M = Hartman number) 

  

 
 
 

Figure 3: Effect of Viscosity on Velocity for Gas (M = Hartman number) 
 
 

 
 
 

Figure 4: Effect of viscosity on Velocity for liquid (M = Hartman number) 
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Magnetic Field 

 
                                                     Thermal Conductivity 

Figure 5: Effect of thermal conductivity on Induced Magnetic Field for Gas (M = Hartman number) 
                                
                                Magnetic Field 

 
Figure 6: Effect of thermal conductivity on Induced Magnetic Field for liquid (M = Hartman number) 

 
11.0 Discussion and Conclusion 

This study examines the effect of viscosity and thermal conductivity on magnetohydrodynamic two-phase flow under 
optically thick limit radiation. The domain of consideration is an open-ended vertical channel, in which the flow is taken 
along the vertical axes  and the  velocity which is a function of y that is v(y) and the other axes are taken as  zero,  that is 
(Vx,Vy,Vz) = (O, V(y), O). 

This study considered the two states of matter that is gas and liquid. The radiation which is one of the parameters 
considered in this study for both gas and liquid increase the rate of heat transfer to the gas and liquid, which leads to increase 
in temperature.  

It can be seen clearly from Figures 1 and 2 that increase in viscosity for gas and liquid, with constant radiation parameter 
gives increases in temperature.  

Figures 3 and 4, the velocity of both gas and liquid increase as the viscosity increases.  
The induced magnetic field for gas and liquid increases when the radiation parameter is constant with increase in thermal 

conductivity.  This can be seen from Figures 5 and 6.   
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