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Abstract

This paper investigates the effect of viscosity and thermal conductivity on
magnetohydrodynamic two-phase flow under optically thick limit radiation in which an
open-ended vertical channel is taken as the domain and the boundary is given as -1< & <1.
The solutions for temperature, velocity and the induced magnetic field for both gas and
liquid were obtained, in the optically thick limit radiation using the method of successive
approximation. The Continuity, Momentum and Energy equations were formulated, non-
dimensionalized and solved. We observed that increase in radiation parameter for gas and
liquid increase the rate of heat transfer to the fluid (gas and liquid) and this leads to an
increase in temperature. Also increase in velocity for gas and liquid decrease as the
radiation parameter increases. It was also observed that an increase in radiation parameter
causes an increase in the flow rate of both gas and liquid.
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1.0 Introduction

The subject of two-phase gas-liquid (or, in generalltiphase) flow is increasingly important in @mggring design and
technology, particularly for the processing indiestrsuch as oil and gas pipelines and nuclear tdoy. Further,
applications of two-phase flow are relevant notyotd engineering and modern scientific problemg, dso to natural
phenomena, and hence, requires additional inveistigel — 29].

Research on the flow of an electrically conducfingl by electromagnetic field in a vertical chahigerecently of much
interest, due to its importance in the design ofjme#o hydrodynamic generators, shock tubes or di@slsaccelerators and
pumps.

Various studies have been carried out in this areble among them are analysis of forced cormedteat transfer to
an electrically conductivity liquid flowing through vertical channel with transverse magnetic f[@ld5, 8]. The limitation
of the above studies is that they do not take amcount heat transfer by radiation which will bgnfficant when we are
concerned with space application and higher opeyatimperatures.

Gupta and Gupta considered the radiation effedtyaino magnetic convection in a vertical channehie optically thin
limit case. They obtained analytic solution for ferature, velocity and induced magnetic field [2].

The analysis in [10] provided an improvement bydiing the effects of variable parameters on magyeliaiuynamic
two-phase flow under an optically thin limit radaat. In spite of that, in this paper we investigtite effects of viscosity and
thermal conductivity on magnetohydrodynamic twogshflow under optically thick limit radiation.

Suneetha et al [3] worked on the magnetohydrodynamo-phase fluid flow which has engaged the aitb@nof a
number of researchers. They worked on the thermdiation effect on hydromagnetic free convectioowflpast an
impulsively started vertical plate with variablerfaee temperature and concentration, taking intmant the heat due to
viscous dissipation. A parametric study was pertairo liberate the influence of radiation parameteagnetic parameter,
Grashof number, Prandtl number, ‘Eckert numbethenvelocity, temperature and concentration prefilthe numerical
result reveals that an increase in thermal radiagoluces both the rise in viscous dissipationaaméleration of the flow.

Dulal Pal and Mondal worked on Hydromagnetic nomdyaflow and heat transfer over a stretching sheethe
presence of thermal radiation and ohmic dissipfdion
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Stamenkovic et al considered MHD flow and heatdfanof two immiscible fluids between moving pla{€$. The
partial differential equations governing the flomdaheat transfer are solved analytically with appie boundary
conditions for each fluid. They observed that daseein magnetic field inclination angle flattens tle velocity and
temperature profiles. Increase in Hartmann numbelgcity gradients, temperature in the middle & thannel decreases
and near the plate’s increases. Induced magnetitif evidently suppressed with an increase ofH#mann number.

Also, Chauhan and Rastogn worked on radiation effacnatural convection MHD flow in a rotating viea porous
channel partially filled with a porous medium [@]he two infinite vertical porous plates of the chahare subjected to a
constant injection velocity at the one plate arelghme constant suction velocity at the other plate

Rajesh worked on the effect of a uniform transvarsgnetic field in the free convection flow of aleatrically
conducting fluid past an uniformly acceleratednité, vertical porous plate through a porous medibnrpressions for the
velocity field and skin friction are obtained bythaplace transform technique [12].

Israel Cookey worked on the combined effects ofrtfa radiation and transverse magnetic field omdyeflow of
electrically conducting optically thin fluid throbga horizontal channel filled with saturated pormedium and non-uniform
wall temperature [15].

Ansari and Ghiasi worked on the hydrodynamicalabsity initial criterion in two phase stratifiedofv in a horizontal
duct [9]. The non linear two mass and two momentoomservation equations are used for numerical lsion using the
two-phase, two-fluid model. The model was solvemhg finite volume and spectral methods respegtivel

Also, Zeidan worked on the numerical resolution #ocompressible two-phase flow model based onthbery of
thermodynamically, compatible systems. The equatioonstitute a non homogeneous system of non lihgperbolic
conservation laws [11].

Jyothi Bala and Varma studied the unsteady MHD laat mass transfer flow past a semi-infinite vaftigorous
moving plate with variable suction in the preseatheat generation and homogenous chemical reafdRjnThey analyzed
the effect of magnetic field and heat and massfesiron unsteady two dimensional laminar flow @isctous incompressible
electrically conducting fluid past a semi infintgoving vertical porous plate under the influenfea uniform transverse
magnetic field with temperature dependent heat eggion and homogenous first order chemical reacfidve analytical
expression for the velocity, temperature and massentration are obtained. The effects of matgaaameters like Grashof
number for heat transfer, Grashof number for memssfer, Prandtl number, Magnetic parameter, peoiliigaparameter,
Schmidt number and chemical reaction parametengetotity, temperature and mass concentration e@ussed through
graphs.

Anuar Ishak worked on the effect of radiation ongmetohydrodynamic (MHD) boundary layer flow of aadus fluid
over an exponentially stretching sheet [14]. Theegoning system of partial differential equationssweansformed into
ordinary differential equation before being solvednerically by an implicit finite- difference mettho

Usman et al worked on the effect of variable patanseon magnetohydrodynamic two-phase flow undécalpy thin
limit radiation in which an open ended vertical shel was taken as the domain in the interval €1<1. The solution for
temperature of the liquid and gas, velocity of blfjuid and gas and the induced magnetic fieldliguid and gas were
obtained in the optically thin limit radiation ugithe method of successive approximation [10].

In [10], the Continuity equation, the Momentum etiprmand the Energy equation were developed toydtuel radiation
heat flux. Increase in radiation parameter foriticand gas was found to increase the rate of haasfer to the fluid (liquid
and gas) and it led to a decrease in temperaturead also verified that the velocity for gas amlild decreases as the
radiation parameter increases. Further, it wasfalsod that increase in the’ Hartmann number fahbiguid and gas, led to
decrease in radiation parameters. Likewise they altserved that an increase in radiation parancetieésed an increase in
the flow rate for both liquid and gas.

In this paper, the work in [10] is first reviewey taking optically thick limit radiation to repladke thin limit radiation
of the previous study. The steady flow was, tak&p iconsideration and all the parameters were dartising the same
boundary condition.

2.0  Formulation of the Problem

This project investigates the effect of viscosityl dhermal conductivity on magnetohydrodynamic ptase flow under
optically thick limit radiation. In the two-phaskW it is expected that there will he laminar fl@wturbulent flow according
to the Reynolds number of the flow since we have different kinds of fluid [gas and liquid]. The Relds number of the
gas will be different from that of the liquid.

Two-phase flow can be classified into the following

(a) Liquid-Gas flow

(b) Liquid-solid flow

(c) Gas-plasma flow

(d) Plasma-solid flow

(e) Gas-plasma flow which is the mixture of differgases.
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The study further focuses attention on the sitmatibien the liquid and the gas are of the same anbstand are being
mixed homogeneously under the same temperature.
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Figure 1.0: 3 — Dimensional Fluid Flow diagram

We consider two-phase magnetohydrodyanamic floweumgbtical thick limit radiation of an electricallyonducting
fluid (Liquid and gas) flowing inside an infiniteextical channel., permeated by uniform transveragmatic field, formed by
two parallel plates of distance 2L apart. (Seelr@).

The diagram above consists of a vertical channehdd by two parallel plates of distance 2L. Theioris taken as the
centre of the channel and we also assumed thairanifhagnetic field Bacts transversely to the plates. Since the chasnel
long and for the fact that the fully developed laami flow in a uniform magnetic field is consideraadd we also take into
consideration the asymptotic flow valid far awapnr the end of the channel, thus all the physicalabées except
temperature and pressure are functions of Y, Yd#ia horizontal coordinate normal to the plate.

In optically thick limit radiation according to [1#he radiation flux vector is given as

=" 40 oT* B
R 3k oay
T=T*(Y)+Nz (2)

For the problem under consideration the following conditions are satisfied.

(Vx'vy’VZ)
(0v(y),0)
(B,.B,.B,,
(O, B(y),0)
qR = (O! qro)
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i
B
B
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oP,

a—tg+D.!:O

oP

a_tg-"D(pg Vg):O ©)
where V, =(U,,V,,W,)

Then equation (3) can be written as:

%+ 2 (0,U)+2 (0, V) +-Z (0, 0)=0 @
ot ox 99 gye e gz e

The continuity equation for the liquid is given as

oR,

a—t|‘+D(,0LV,_):0 (5)

where V, =(U_,V,_,W,_)

The equation (5) can be written as

P 0 9 d
TL+Z(RU)+—(P V) +—(o W) =0 6
at aX( L L) ay( L L) aZ (pL L) ( )
Since the flow is steady then equation (4) and equation (6) becomes
( oP, aP,
ot ot
oY, +6V9+6Wg +V, (y)Op,=0 (7)
S ax ot az}gyp@_
U, Vv,  OW,
+ + +V Op, =0
{pL ot L (Y)Op,

(8)

respectively, but since

V, = (O,Vg (y),O) , 'V, =(O,V,(y),0), hence

ou, =0Vg :an =o=0UL :aUL :aWL
0x oy 0Z 0x oy 0Z
Now the equation (7) and equation (8) reduce to
V,(v)Op, =0 o
andV, (y)OP, =0

3.0 Momentum Equation

The momentum equation for gas and liquid respéelgtime given in terms of components as:
In X — component, we have

DU oP oP oP
9 _ (x)(9) (y:x)(9) (Z,%)(9)
pg Dt _Bx(g) + ox + gy + oz +kg|_(UL _Ug) (103-)
DU 0Py 0P, 0P,
L — + (xx)L + (y: X)L + (ZXL +k|_g(Ug _UL) aa))

Ppt D0 T T ey oz

In' Y — component, we have
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DV oP oP, oP
9 _ (x.x)g (y.V)g @Z.yg _
Py Dt _BX(g) + ox + ay + 9z +kgL(UL Ug) (1)
DV, _ Pyt , Py, Pz
LF_BX(L) + o + oy + P +k U, -U)) (1§9))
In Z — component, we have
DW oP oP oP
g _ (x.2)g (v.2)g (z.2)g _
29 Dt — Pz(9) X + ay + 9z + kg L (U L U g) (lza)
DWL _ al:)(X,Z)L aP(y,Z)L al:)(Z,Z)L
T_BZ(L)-F ox ¥ ay ¥ 9z thUg mUL) 120)

where B, , By, and B, are the body forces ifX,Y, and Z directions respectivelyJ ,V,W are the

velocity components, whild® and o0 are pressure and density respectively.

Since the channel width is constant, then all d¢ines along x goes to zero, therefore (11a) anehtemn
(11b) can be reduced to

DV, op

% i = B gy Ko U7V a3
DV oP,

pID—tL By(|) WL-I- KLg(Ug_UL) (13))

where KgL = K,_g is the friction coefficient between the gas and fiiquid which gives the interaction

force between them. For steady flow and negledtiegchannel porosity such that injection from abard suction
below is neglected then we have

1 oP
0 :_{By(g) - } +E;
Py oy
Likewise the liquid equation becomes
1 oP,
0=— {Bg(u __L} +E;
Py oy
where
E; = KgL(UL _Ug)
It then follows that the momentum equations (124 B2b) reduced to

1 P ol L OW,
. Bz(g)_a_+_ ,L[g (0’9 +1) + ET :O (14a)
Py 0z oy| dy |
i oW, ]
Llew-a 42 4@+ 2 \lhE =0 (14b)
L 62 ay_ ay ]

where
p= (a6 +1) and g, (06" +1)
Since B# B, (a constant) then we assume that the magneticsityas of the form.

0B
By =0 2+, GB(E + NZ) a54)
ty oy

9
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B, 9B,

B, (L) = 5 TP 986" + Nz|

(15b)
g

where 6'— is the temperature difference

B — is the volume of coefficient expansion
B, — for liquid
By — for gas

Substitute equation (15a) and equation (15b) igtmton (14a) and equation (14b) respectively, axeh

oP, ow,
1 B, o) “Te, 0 [(,ug(aeul)—g} +E =0
Py 0z oy oy

OB W
1B % +p, 9B (6" +NZ) - i +9 [,ug (a6 + } +E, =0
Py | Hy Oy 0Z 6y oy
0B oP,
i —2+gB(6" +N2)- i_ ﬁ —(ab" ET =0
Py, Oy Py, 0z p, Oy F’g
0B, oP, oW, ow.
% %0 gperegmz L Crete g% TR M gy T B oo
Pyl ay P, 0z p, 0Oy 0y p, oy’ o,
B,0B 1 oW, 9° 0
B | gpgr +Ho g0 Mo Hs o 0o (B ap s L0 gy
Py M0y py Oy Oy ug ay* P, py 0Z
likewise for the liquid i.e substituting equatiatbp) into equation (14b)
We have;
B aBL +gﬁ91 luL % L +iuL( 91 1) L +E_ H\'Z"- 1 apL (163)
PLH_ 0Oy pL 0y oy p ay* P p. 0Z
4.0  Energy Equation
The conservation of energy equation is given by
c, o = (K ) (K ) (Ka ) -0 17a)
—(K—=)+—(K—=)+—=(K—)- a
Pt T D 6x ox 0Z
DT, DP, Ty, 0 0 0Tgy, 0 3Ty 1L7b)
P th “ Dt ax) ay(K ay) az(Kdz) Has

where T =Tyg=T

T - Is the temperature inside the fluid

K - Is the variable thermal conductivity parameter
Py - is the density of gas

oL - is the density for the liquid

G - is the specific heat at constant pressure and
Or - is the radiative heat flux

Since there is no variation along x — directiomrthve have
i(KaT) _ i(KaT) _
ox 0x 0Z 07
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By virtue of the definition of T in equation (2) dfor the fact that the flow is steady flow,

oT
— =0
0X and

U g =Vg =0
Then equation (15a) and equation (15b) become
C, oW, N _ 0 dT _0gg
Ty ay  dy

(18a)

(18b)

0,07 _0dy

C.p W, N =
PP dy ay dy

Where

oT | . :
N = — - is the vertical temperature gradient

Also, in view of the fact thaK = K, (@8" +1) equation (16a) becomes,
06") _ dqg
oy

0
CpnggN :a_y(Ko(a'g1 )—~= ay

(19)
Simplifying equation (17) we have;
(96")? 0’6" 3G,

+K, (a 91+1) 5
y

0
Coo,W,N :a—y(KO a

divide through by GOy . we have

1 2 1
W,N =T {Koa(ae) K, (a6 +1) 25 "qR} 20)
C,P, oy oy* 0y
In the optically thick limit, the flow absorbs itswn emitted radiation. This implies that there &f s

absorption.
The thermal radiation heat flux relation is given a

o - oot
R 3k ody

(21)

Where o- is the Stefan boltzman constant

K- is the Roseland mean absorption coefficient.

Then, equation (21) can be linearized by expandiimgo the Taylor series about, Bnd neglecting higher
order terms to give.

T =413T -31? (22)
Then, substituting equation (22) into equation (21)

40 0 3 4
=- AT3T - 3T
I =T3¢ ay( ) (23)
4
qr =-29 4391
3K oy
G __164T; 0T
R 3K dy
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Substitute equation (23) into equation (20) we have
1y 2 20l 2
w,N=_1 Koa{Koa(ae) +K, (6" +1)° 6: L1300 Tja-lz-} (24a)
C,o, oy oy 3k oy
It becomes

W,N -1 Koa{KOa 06)’ +K, (a6 +)) 026: + Cé?l} (24b)
C,0, oy oy

where,

oy

and

c-160
3K

5.0 Magnetic Induction Equation
By using Maxwell’s equations and ohm’s law whichnect the electric field with current density, wanawbtain the

magnetic equation for both gas and liquid respebtigs.

d’B dw.
29 B, 4,0 9 -0 (25a)
dy dy
2
ddszL B0 d;/\y/L =0 (25b)
Where

B, — is the induced magnetic field for gas
B_. — is the induced magnetic field for liquid
By - is the applied magnetic field.
o _ is the electrical conductivity.
Ky __is the magnetic permeability for gas
u. - is the magnetic permeability for liquid.
Henceforth, thermal conductivity and viscosity ttieated as variable parameters that is

U=, [a@llj and
K =K,|ag4]
We incorporate into the momentum equation for gad momentum equation for liquid, the magnetic béatge in
addition to the body force due to gravity in theivd Z directions yielding

dB, dP
&_g +__ 94 ET =0
“, dy d, (26a)
B, dB  dR | E =0 (26b)
/’IL dy dy
Eliminating the pressure terms in equation (16a¥6it) we integrate equation (16a) with respect, tweyhave;
P, = -B% +P(Z2) + E; (27)
Differentiating the above equation (3.27)hwiespect to Z we have,
oP
oy _0F(2) (28)
0Z 0Z

Which is the pressure force in Z direction substigiequation (28) into the momentum equation Y16 have
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0B 1 oW, ! 9°W,
P S+ oS S Oy S e ez () )

Pyid, Oy Py oy oy py 7 oy* PR Py
We can see clearly in equation (29) that the rgith¢ is a function of Z only while the left handlesiis a function of y
only. As a result the right hand side can be repriesi by a constant,;@s shown in the next equation.

dB 1 1 2
B, _g+gﬁel+ug d&' dwg , (a8 +1)ugd\/\2/g+5:cl )
Hypy dy pg  dy dy Py dy*  p,
The following non-dimensional quantities are inwodd.

LW,
5:L,62X'V9'Vg: 9
Cp L o

oty

! B
t= —g_,bg =_9
NL B,
%
M =B Ll: o }
pg 9
ng = JJ,UQ = the magnetic prandt Number for gas
9huL4 _
= = Raleigh Number for gas
R =g
_Y -
=L =y =4
L
d_daf_1d
dy dfdy Ldé
d°_1d°
dy’ L? dé?
1 1
B, B, opr i 48,06 W,  la6* +1) g sz\zlg +Eroc
HyPg dy py dy dy Py dy”  p,
db, - a? Vv,
B 1%, 5 NLt)+ﬁa£( NLO)- (g, ) GONO+) A0 Yy By
Uy, L dé py LdS Ld$ Py L* dé®  pg
db, av, (- od¥V
Bo’ _ gL Fo GNLO dt , (CaNLt+1) HodVs (B ¢
LpyH, O p, L dE d¢ Py L dE  p,
2 2
Bo? db, — gANLL - ﬂai\|+5ﬂgsdvzg+aﬂl-tdtigdvzg+5: ]
LpyH, 4E pLe pPdE p, LB dE” p,
_ p,L°
Multiply through by , we have
g
2 12 2 2
Bo? L .dbg _pggBLt_L dt dv, dz\/;J —aNLtdzvf .\ LV, E, _ L* o, —¢
ou, oy, dé Ol d{ d{ dé dé o, o,
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2
But B, :% P Vyand gBNL* =RV

2 V L? R dv, d¥ d2V
Mzg Pa Y .db“—pgt ® d\/g—LaNﬂ.—g+ - —aNLt——
> qu, qu, d& U, dé dé = d¢ dé
L3E L3ng
5,ug u,
_ _ M
But aLN = Fg’ andVg —W
gr~g
2 3 3
I\/Ig db, CR,I-F dt.dVg+d2Vg_Ftd2Vg+LET:L,Ogcl
Pm, df 9dé dé  dé? o dé? o, o,
M,* db, dv, dav, 2 L3
° BRa t= gi_g-'-(l_lzgt) 2g +LET 2 C,
Pm, dé dé’ dé A& au,
Let C, = L3,()gC1
We have
M,” db, dt dv. V%V, L°E, _L°E
0 R, t-F,— — S +{-Ft)——L+—T=—"T =,
Pm, " dé dEdE et T,
dZBg aw,
a2 +BoUﬂgw-0
1 d2b é'dVg _
12 2 +B 0H g 13 =0
L® dé L°dé&

B, d? b, +B o 4,0 dV
L2 dé? ° L2 dé

L2
Multiply through by —

BO
We have

L
ae % gg T
Let Py, = du,

d?b, av,
+o0P. —=2 =
d{Z mg d{
Divide through by R4
2
1 db, v, o

P d&?  C df

0
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Let g =1
We have
2
1 d bzg L
P, d&% dé
1 det\’ d26"
W,N=———1K a( J +K (a91+1) +C8o"

C,0, dy dy’

L \ Lt C,p, \ dy

ppg P

_ 1\ 2 d 26" 1
%(_ej:a Ko (6] | Ko (g9, CO
C dy C p

Usman and Onitilo Jof NAMP

(31)

N G adll 2 x _
M 0Py (1 d (_tNL)J L LoPy (@ (~tNL) + 1 d®(~tNL) , C(~tNL)
Lt C,p, \Ld¢ o Py dé? C,p,
COVG(INL _ adNL?(dt )", daN®L%t d*t _ ANL d _ CNLt
L2t L2 dé L2 dé?  L? dé? C,p,
2
anzal ) 4 sz 87 N d’t  CNLt
C dé dé? L dé? C,p,
L
Multiply through by —, we h
ultiply throug yd\| we have
2 2 2
V, = alN dt aNLtdt—dt—CLt
dE dé? dé? &,p,
2 2 2
V, = F, dt +|:tdt_dt_ CLt
d& “dE? dé? &, p,
dt d? t
V, = FQ(EJ +H(Fyt=1) -~ Bt (32)
Multiply through by
2 2
v, =F[ %) +(Fe-1)-21 gy
dé dé
L
N
Where
F, =alLN,E = CL2
&ppg
Thus we have the following set of equations todieesl
M,* db, dv, dv 3
Do P _cRrit-Fat 2+ Doty + b= G2 gy
Py d& df  df d&?
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1 d%, dv
+

=0 34
P, d&?  d&f (34
2
[ dt d’t
Vy = Fg[a} + (thg _1) dg’ —E;t (35)
Where
F, =aLN
2
E = CL
o
3
c, = L°C,
oV
1
C,=—
ooV
c=_H
Ny,
The boundary conditions for velocity and temperatarne:
V,(6)=T(&)=0atéx1
b,(€)=0até=21
6.0 Analysis:-
By integrating equation (34), we have
d’b, dVv
! 2g +—2 =0 (Integration)
P, d&  dé
1 db, _ _ _
———*V, =C; (Where Gis the constant of integration
Py d¢
db
L 9 = C, -V,
Py d¢
db
d_; = Png (C3 _Vg)
Which implies that
db
Vg =C, _i_g (36)
P, d&

Putting equation (36) into equation (35) we have

2
dt d’t
V, =F, (—j +(F,t —1)d— ~Et

dé 9°
Making the substitution
db ?
O N T L. [ (O TE L1 (37)
P, d& dé dé

Differentiate equation (36) and put the result iatation (33) and we get.
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dv, 1 d%b,

=- and
d¢ P, dé&’
dv, 1 d’b,
dez P, d&°

Make the substitution into, equation (33)

M2 db, av dv,
—eRt-F, A e p)f e BB

P dé 9d& dé dé* 2
MPdDy g 10 1A UE
P,, d& ot dé'P, dfz P, A |,

Make d—; the subject of the formula from equation (35) aatithe result into equation (37) we get from
equation (36)

db 2
Cs_i_gz F, i (Ft 1)ﬂEt
P, dé dé dé

mg

; 2 db
C3—Fg(£j “(Fr-9)9tgr=t T D

dé 'dé? " P, P, df
dt d’t db,
ng{c F(d{j +(F,t-1) i Et} i (38)

substitute equation (38) into equation (37)

- 2 3
2 db, B, _cpeFod _-F)dn, | g ¢,
ng dé P,dé P, df o
2 F d’h, W-F,it)d*b, |3
M2,C, - F [ & (th—l)—dE—Ent—CsRagt+ o O ;—( ) LIS
dé dé P, d d& P, d& o
2 F,
M9c, -m F, [ L Mgz(th—l) 9t MEL, ~CRt, +-%  (39)
P dé dé dé

p (L-F,t)d°p, 3
a*_(L-Fy)dd, | UE w0
&2 R, d& &

mg
VTIARY
M 2g(Ft 1)d<,

d
C;Ry g—M F (d:‘j =C,

Fy dt d’b, N (1— th)d:‘bg _LE;

M°C, - Y 3
P dé d& P d& o,
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d2t dt \’

-M2g(F,t —1)d_£ +(M%E, -C,R I, -M ZgFg(d—gj

1-F,) d%, F d’b, L3

( g)tg 3_ gﬂ’ ZQ_LET +C2_M2gc3

P, °d& P, dfde?
Equation (40) can be written as
1-F F 3
~M2(Ft-1ktig + (M2E, ~C,R, ), ~M2oF, [t fF =| T | b, o thgpty - E 5T s,
Pm ng ] g

Where

C,=C,-M?%C, (41)
Equations (35) and (36) also become,

1
Vg = C3 _P—blg (42)
mg
(Ft-1k +F, [t f - Et=C, - b, 43)
ng
Respectively.
Now by ignoring the non-linear term in the equat{dh) we have.
L’E,

~M2g(F,t-1k"g+(M%E, -C,R ), -C, 5 (44)

Therefore equations (42), (43) and (44) are sultjettie boundary conditions.
t=V=b=0até==1
NOTE: The subscript g denotes gas. We shall replacéthitthe subscript L to denote liquid in the samtepa.

7.0  Method of Solution
We use the method of successive approximationlte she differential equations (45); (46) and 4a%) gas and for

liquid.
The required equations to be solved for in casgasfare;
=
M2g(i- F k" - (C,R, ~M%E, k, =C, ——— (45)
Oy
11 1\ blg
(th_l)t 9+Fg(t 9) Bt =C-—— - (46)
ng
1.5
V, =C; ———Db7q(47)
ng
Solving equation (45) we have
L’E
M % (l_ th)tllg - (C3Rag -M 2QEn)[g =C, - E .
Hq
The equation becomes
M 29 (1_ th)tllg - (CSRag - M 29 En)[g = CS (48)
Where,
3
C,=C, -
o,

To solve for the complementary solution, we have,
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M2 (L~ F,th = (C,R, ~M2GE, k, =0 (49)

M2 (L= F itk = (C,Ry ~M2E, ),

Let t, = A emf
- ‘

t,, = A mem
ty, = A m* emé

Then substitute into equation (49) we have
M2, (1~ F t)A'M 2%e™ = (C,R, - M 2E, JA e mé
é
Divide both sides by A 8" we have
3 C, Rag M 24 E,
= w9
M 25 (L= F,t)

M? =+ —C3R39M29E”
M?g(L- F,0
C,R,M?E

Therefore; M, = M and
M % @-F,t)

M. = — Clg,RﬁgMngn

2 M2y (L~ F,t)

Thereforet, =a,e™ +a,e™’
To get the particular solution. i.g t

Lett, =C

t'lp=0 andt™1p=0
Substitute into the equation above, we have

M 24 (L F,t)0) - (C,R, _M%E, JC = C,
We have

(R, _M%E kc=C,

— C5

(C,R, _M%E,)
Therefore the general solution is

2

C
t, =ae™ +a,e™’ - ( 2 (50)

2
C,R, _M%E,)
Applying the boundary conditionsgt 0 até = + 1 and solve the two equations simultaneousé/heve

ae ™ +ae’ C
1 2 =
2 [C.R, _M%E,)

aie—m + a e—m C5
1 2 =
2 (C.R, _M%E,)

=0 (51)

=0 (52)
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LetK = S
(CSRag _M 29 En)

Then the equations (51) and (52) become

ae™m+ae™-k=0 (53)
ae™+ae-k=0 (54)
from equation (53) we have
aie"‘l =k- aze’“z (55)
_K-a,e™
- e™

Substitute equation (55) into equation (44), weehav
ae " +ae " =k
| K—a,e™ _
e ——|+ae ™ =k
€1

(K —a,em o™ +a,e™ =k
Ke™®™ —-a,e™ —*M +a,e ™M =k
a, (e‘zml - emz'zml) =k -ke™"1
k(l— e'zml)

g2 _ gm2-2my
Substitute the value of into equation (55)

_k- a,e™

e™
_k-kfL-em e,
& =—

e 2-— -2
- e™ N

a, =

m

€1
k(e""z - ei“z_zml)— k(l— e_z‘ml)emZ
e™ (e— m, — emz_zml)
K (e_mz - emz)

-m

aiz

m

m m
€ 1—2-€2—1

Differentiating equation (50) twice we have:
Cs
C;R, - M ’E,
the = am%e™’ +a,m’e",’
Atso (t4g ) = (t o)
= [amen +a,me™’ fame™ +a,m,em)

=am%e™’ +2aa,mme™ +m)¢ +a,’m,’e?m,’ (55b)
Substitute equation (55b) into equation (46) weehav

t, =a,e™ +a,e"é -
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1
e (P~ + F,(t% ) ~E t, =C, ———bly
ng
2 1
Ft's —t'y + F, (tlg) -E,t, +P—blgJ =C,
mg
F,(am’e™" +a,me™’) —am’e™’ +a,me™’ +F, (azlmlzez’“‘( +2a,a,mm,e(™ )¢ + azzmzzezmz‘()—
C. 1
> +
C,R, ~ME, Pu
F a 2.m¢ + m § _ 2.m¢ m_¢
Jqaum € 1" ta,me’ —am e +ame +

E.(a,e™ +a,em’ - b'y=C,

Fgazlm 21e2mM° + 2Fgala2m1m2e(m1(m1+mz)“ + Fgazzm 2eMp +
2 G 1.
En(azemg-kW-kp_ b'y=C, (56)
GRy-MyE Ry
Integrate equation (56) and use the boundary dondlh = O at{ = 1 to obtain the constant of integration. The
integration gives,

> o ¢ 2. om ¢
Foamie™’ Fambe™ amien’  am’em’

m, m, m, m,
2 2 2m¢& ¢ 2 2 _om¢
F,asm’e®™’  2F aa,mm,e™™* F a’m’e’ >’ E ae™f C.,& 1, _
+ + - + > + bg —C3£+C6
2m, m, +m, 2m, m, C;R, -M/E, Py

F,ame™’ +F a,me™’ —ame™’ +a,me™’ +

F,a’ime”™’ . 2F aa,mm,e(™ )¢ . F,a%m?e”™*
2 (m, +m,) 2m,
m ¢ b
E”azf 2+ CsEwe ——y+——--C,£=C, (57)
m (C.R,-M,%E,) P

mg

Therefore substitut® = 0 and £ =1 into equation (57) to get the constant of integra€;. We have
F,a’me’™ .\ 2F ;a,a,mm,e(™""2) N F,a%m,’e’™,
2 (m, +m,) 2m,
) CsE, S
(CSRag -M, En)

Therefore equation (57) becomes

2 204 <
alml(Fg —1—E—2”je‘“1“ +a,m,(F, -1~ Jem¢ +F, 2 MEM mlze m .

m-
2F,aa,mme" " 2)¢  Foa, m’e™m’ EC& ..
+ f 2 ) C3§( - Ce (58)
(rnl+m2) 2 (CSRag_Mg En)
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Hence,
F,-1-E F,-1-E
blg - ng (aj_rnl( rg:lz n)emlg‘ +a2 ( g m22 n)emzf + Fga:LZrnlf +
m+M \¢ 2 _2m &
2F a,a,mmye(™" 2) N Fgaz m,"e’"> _ EGCS y—C, =C, (59)
(m, +m,) 2 [CRy-M,E,)
am(F, -1-E F,-1-E
blg :Prrg ( 1rnl( :‘]12 n)emlé-l'azmz( g mz n)e ga:l. rn.’l.ezm1{+
2
2Fga1a2rnlmze(m1+m2){ .\ Fga2 m 262m é ’ EnC5§z -C (()_
(m, +m,) 2 [CR,-ME)
(F, -1-E,) (F, -1€,) a, me’’
am —————e" +a,m,———em, - F, 2
m, m,
2F a.a.mm m*+" )¢ F a,’me®,
o2 Mme(" 2)"  Fya,m, E.Cs -C,=C, (60)
(m, +m,) 2 [cRr,-M,E)

To getVlg , we differentiate equation (60) above and substituinto equatlon (47).
The differentiation gives.
2 2m 5

b, =Py [Dlmle"‘l‘r +D,m,e":" +F a°m’e
2F,aa,mme(™ " 2)¢ +F a,°me™ +

) E,.C, . ]

(C3Rag -M ngn) i

V, = [Dlmlemf +D,m,e"’ +F a,°m’e™ +

E,.C.
2F aa ")+ e, metm + (61)
ngrnlmze( 2) > M, (CRag M E)
Where,
F, -1-E,
Dlzalrnl(h 2 )
m
F,-1-E,
DZ:azmz(h > )
m2

Now to solve for equation (41) we differentiate atjon (60) thrice and equation (50) once, then uibs into equation (41)
by =P [Dlmlemf +D,m,e"’ +F a,°m’e’™ +
2F,aa,mme(™" 2)¢ +F,a,’m, e*
E.C
, n>’5 > L C3]
(C3Rag -M, En)
by = =P, [Dlmlemf +D,m,e™’ +F a,°m’e’™ +
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32m5]

2F a,a,mm,(m, +m,)e(" " 2)¢ +2F,a,°’m’e
bty = -P, [Dyme™ +D,m %™t +4F a’m, ‘e’ +
AF az m, € +2F alazmlmz(ml"'mz) e( 1 ) ]

Differentiation of equation (50) gives,
thy =a,me™’ +a,me"’
Therefore substitute the above differentiatioris the RHS of equation (41), we have,

42m5

(1_ Fg)t btil, _itlgblllg _ L3ET +C,
Py ° P au,
R e
P i s 2{)_(63&9 ‘5M 2 )(_ Pry (D:mye” +

D, =m,’e™’ +4F a’m ‘e™™ ¢ 4F, a22m ‘¢ +

2F a;a,mym,(m, + m,)2e(™" " 2)¢ )

+F,Dam’me("s ") |+ F,D,amm,’e(" ") + F,D,a,m’

™.’ +2F “a’m ™ + 2F *a,’a,m’me(*" ") ¢ +

2F "aha,mPmy(m +m,)e(*™ " 2)¢ +2F %a,’m, ‘e +C,

(ZF Dam’ -4F *a’m’C, -D,am’ +4F C,a’m e +

2F,D,a,m,* - 4F %a,’m,’C, - D,a,m,® + 4F C,a,’m," ™™, +

(C7 D,m*-F,Dm°C, )emf + (C7 D,m,’ -F,D,m,°C, )emz“

F,D,a,m,’a, +F D,a,m’ + 2F *aa,’mm,(m +m,)” - 2F *a

a,mm,C,(m, +m,)? -D,am,’ - D,a,m’ +

2F,a,a,mm,C, (m, +m,)* + F,D.a,m’m, + F,D,amm,’
mm e

(2F,D,a,m,* - 4F %a,’m,’C, - D,a,m,® + 4F C,a,’m," ™™ +

[c,o.m® -F,pmc, et +(c,D,m? - F,D,mC, "2

F,D,a,m,’a, +F Da,m’ +2F *aa,’mm,(m +m,)” - 2F *a,

a,mm,C,(m +m,)? -D,am,’-D,am’+

2F,a,a,mm,C, (m, + m,)? + F, Dlaszmz +F, Dza1mlm22

(") +
(6F,%a’m" —4F a,’a,")e™ + (6F,a,’m," - 4F a,’m,")e™"" +
2F,*a*a,mm, (m, +m,)* - 2F a*a,mm,(m, +m,)” +
2F,“a’ia,mm,(m, +m,)® - 2F a%a,mm,(m, +m,)” +
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(6F,°a’m* - 4F a’a")e’™ e (6F,°a,’'m," —4Fga23m24)e3mz‘( +
2F, *a’ia,mm,(m, +m,)* - 2F a%a,mm,(m, +m,)* +

2F, Za%ia,mm,(m, +m,)?e(?
Mz _2Fga1a2 mlmz(ml +mz) e(mlﬂmZ)gr +C;

g 2 2 2.4 2
2) + (4Fg a,a,” m,a,” m, —4Fga1a2

Where

(62)

The complementary equation becomes
— m ¢ m ¢
t,c =a;e1r ta,e (63)
The particular equation is
= a;e”™’ +a,e”" +a,e™’ +aema g™ ™) +

£
81 3m~;‘+a11 3m c‘+a1 e(2m +m) +a1 e(nr11+2nr12) 314 (64)

we differentiate equation (64) twice and substitate the LHS of equation (41) we have
t'2, = 2a,me*™’ +2a,me*™ +a me™ +a,me™ +
ag(m, +m,)e(™"™2)¢ +3a,me
2
e(z’“ %) +a(m, +2m,)e(M )¢

2p = da,m’e®™’ +4a,m’e®™’ +a,m’e™’ +am,’e™

3m &

2’ +a,(2m +m,)

¢ +3a,m,e

ag(ml+m) e(m +m )f +9a1rnle,?>m<r+9a11m eSm f_l_
a, (2m +m,)2e®™™) +a,(2m +m,)’e

Now make the substitution into equation (41)
~M*(Fy —Dt"g +(M°E, ~C;R,t, —M °F, (t's)?
-M 2 (F, -1 (da;m’e™ +4a,m, ™™ +a,m’e™ +a,m, e’

ag(m, +m,)’e +9a,,m°e
8, (2m, +m,)?e®™™ +a,(2m, +m,)%e™
M,°E, —C;R, )(a;€™™ +a,e™™’ +a,e™’ +a,e™’
age(m, +m,) a,e” +a,e
86" g+a,)

Now comparing the coefficient of the exponentiahte in equations (62) and (65); we have

2F Dlalml - 4F, atz2m’C, - D,am’ +4F,C, a’im'
—4M?2 ( ~m?+(M,’E, -C Rag)
2F,D,a,m,” - 4F *a’>m,"C, - D,a,m,’ + 4F C,a’>m"
a; = > — \
_4M9 (Fg _1)+(Mg E, _CSRag)
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m +2m )f

g T a12€(2m1+m2)g +
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C Dlm1 -F DlmlC

ARSVEN ) PV +(|v| E,-C,R,)
B C7D2m2 —FEJ[')Zm2 C, ‘
B M 29(':9 _1)"'”‘212 +(M92En _C3Ra9)
= F,D,a,m,’a, + F,D,a,m’ + 2F *sa,a’smm, (m, +m,)?

- 2F,*a,a,mm,C,(m +m,)* -Dam’ - D,a,m’

. 2F,a,a,mC,(m, +m,)* + F,D,a,m’m, + F,D,amm?>

—m?y (F, —(m, +m,)* +(M,°E, -C,;R,)
6F,"a,’m* - 4Fga,’m;’

%o = —9M *(F, —)m + (M%E, -C,R,)
= 26nga23ml‘; —4nga13ml4
-9M, (Fg -Dm~" +(MGE, _CSRag)
. = 2F,%a,"a,m,a, (m, +m,)* - 2F a,2a,mm, ™™ +

2F,"a,"a,m "m*(m, +m,
M *(F, -D@m, +m,)*(M°E, -C,;R,)

4Fg2a1a22m24 ~4F, a,a,’m,* - 2Fga1a22mlm2(m1 +m,)?
-M*(Fy —D(m, +2m,)% + (M °E, -C,R,)

Q3 =

a:I.4 = C8
Hence,

tZQ = t2c + t2p

t,, = ae™’ +a,e™’ +a e”™f +a,e’™ +a,e™’ +aem’ +
(66)

a e(m +m2) + aloeISml + alleSm é + alzeZm +m )f + a:l_ e(m +2m )5 + a14

The complete approximate solution f@istobtained by addinggtand t4 together and obtain.
:ale’“l‘r +a,e™’ —-C,+a.e™’ +a,e™’ +a,e’™™’ +a,e’™’ +
a,e™’ +a,e™’ +a,e™ "’ +a,,e™¢ +a,e’m° +a,e™ M) +
+2m2)
a13e(m g Ty, (67)
Which implies that
t, = (& +a, +a,)e™’ +(a,+a,+e"" +a,e”’ +a,e”™f +a
¢
e(m1+m2) + aioe3m1<r + 31163ng + alze(2m2+2mz) + a13e(ml*meZ) +a 14 _ C7 (68)
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Likewise with simplification, we obtainpas
F a2
b,, =P, (€™ —e™*)D,+P, (€™ —€™)D, +—ga; m (e®™f —e?™)

2
+ Fgaz m, (eZmzf _eZm 2F a,a,mm, ( (m +m

2)+ )‘r —em™) +
2 (m, +m,
E.C
”552 —C;(¢+) (69)
(C3 Rag - M g En)
The complete approximate solution of the magnéid for gas will be
bg = blg + b29

m m a’'m .
b, =-P,,D,e™" - P, D,e™’ + mz -(1-F e -

F.a
Fa’me™™ +— -2 ; m, (1— P, )ez’“z‘( -F,a,"’m,e™ +
m +m ¢ m +m
4F a,a,mm,e™ ") a-p )- 4F aa,mm,e™™)¢
(m +m,) " (m, +m,)
E.C. (P.£-1)- (D, +F,a°me™)e™
(C3Rag M, ’E ) 2
D,+F.a e e”
( 2 g 22 1) 2 (70)
To get by, we differentiate equation (63) and substitute quation (47)
F 2
B,, =Py (eml‘( -e™)D, + Prg (eng -e™)D, + ga; m (ezml‘( —-e”™)
2
. Fo?'M, (€ —e™,) + 2F,a,a,mm, (emrmE _ g™
2 (m, +m,)
E.C
£ e+
(C;Ry —ME,)
F 2 2m 13
b'2g = +P,, D,me™’ - P D,m,e™’ + al r;l
2F azmz2 M2 ‘ ZFgalazmlmz(ml +mz)e(ml+mz)<‘ + (71)
2 (m +m,)
EnC5 _
3
(C3Rag - M ngn)
31 r,aneZm 4
b2 = +P,,D;me™ + P, D,m,e"’ +Qf +
F,a,°m,’e™"*

+2F a@,mm,(m, +m,)e" )¢ +
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EnC5
(C3Rag - M ngn)

Substitute the above equation into equation (47)

-C, (72)

1
VZQ = C3 = —blzg
ng
2_2m ¢
e
Vzg =C, = i[ng Dlmleml<r + ng Dzmzemz‘r +&
Pg Prg
F,a,'m’e’™’  2F aa,mm,e™™; +
ng ng
E.Cs _
3
(CsRy =M, °E,)
2_2m ¢
e
V,, = 1+ Py)C, ~D,me™’ - Foaim'en
Pg
F,a’em’e’™"  2F aa,mme™ ™
ng ng
EnC5 _
3
(C3Rag - M ngn)
F 2 2m 13
V,y = @+ PR,)Cs - D,me™’ - D,me"° — L
Pg
F,a’m’»e”™¢  2F aa,mm,e™ ™" E.C, 72
ng ng (C3Rag _Mngn)
Thus the velocity for gas (Y becomes
V, =V, tV,,
Vv, =[1—i]03 + Fgalzmlzezml“ﬂl 1 ]+ F,a’am?.e", “[1 i]
EnCS - —C3 1_ 1 (74)
(C3Rag -M g En) Pml-

Similarly, following the same method of solutiontbft of gas and we have that of liquid becoming.
t =(a +a,+a,)e™’ +(a, +a, +a,)e™’ +ae’™’ +a.e™ +
age(m, +m,) +a, e’ +ay, +e™’ +a,6("" )" +aee(" )  +a't - C, (75)

Likewise

2
b, =-P, D™’ - P, D,e"¢ +—prnLai M 1-F e -

mL

FLazlmleZm 21mz (1 P ) 2m, ¢ _ La22m
4F aa,mm,e™ ™) QP )- 4F,a,a,mm,e™ "¢
(m, +m,) ™ (m, +m,)
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En C5

(C,R, —ME ;o =0 - (0 +Fa‘memens
3" ag L *n

(D, +F a,’me™)e™ (76)
and
1 2 2m 3 1 2 2m 13 1
V, =|1+— |C,+F e +Fame 1-—
L ( Pij 3 Lail. rn:l. ( Pij L2 PmL
EC
— —C{l—ij (77)
(CsRaL -M L En) I:)mL

8.0 Determination of the Temperature Profile
The temperature profile for gas and liquid is aledi by evaluating equation (68) and equation (75).
tg - (a:l. + a3 + a7)emlcr + (a2 + a4 + a8)em2cr + aseZmlcr + a.6e2m2<‘ +
ae(m, +m,)¢ +a, e’ +a, +e™m’ +a,e(*™M )¢ +a (M) +at - C,
tl — (a:L + a3 + a7)em1<r + (a2 + a4 + ag)emzf + aSeZmlf + a.6e2m25 +
age(m, +m,)* +a,e™" +a, +e™2 +a,e(" ")  +a,e ) +al -C;

9.0 Determination of the Velocity Profile
The velocity profile for gas and liquid is given bguation (74) and equation (77).

1 2g2m € 1 2 2 om ¢ 1
V. =[1- C,+F 1-— [+F.a,"m,e 1-—
’ ( I:)mL] alrnl ( I:)mLJ a2 ? i I:)mL

N E.C. : (1_ 1 j
(CS ag _Mg En) I:)mL
V, = (1—PiJc3 +F a,’m e’ (1—%} F a,’m,’e’™,* (1—i]

mL

mL mL
N E.C. [y 1
(C3RaL -M L En) I:)mL

10.0 The Induced Magnetic Field for Gas and Liquid
The induced magnetic field for gas and quuid igegi by equation (71) and equation (76).

m<(+ mgalrnl
2

and

b, =-P,,D,e™" - P, D,e - (L-F,)e™f -
F
Fgazlmlezml +%(1— Pig )ezmzf - F, a22m262m2 +
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m +m )¢ m +m
4F a,a,mm,e™ ") a-p )_4FLa1a2mlm2e( )
(m +m,) " (m, +m,)
E.C F.a’me™)e™
> 2 - (ng _1) - (Dl + :
(C3 Rag - M g En) 2

(D, + F,a,°m,e™)e™
2

F asm
Fa’me®™ +—="2(1-p_ )e™¢ - F a,’me™, +

4F a,a,mm,e™ '™ 4F aa,mm,e™ ™)¢
(m, +m,) (m, +m,)
== ~(p, -1-Pu* F 3, 'me™)e™
(C:Ry _MLzEn) ™ 2
(D, + F_a,’m,e™;)e™
The constant€,and C, are obtained by using the boundary condition
b=vV=0a ¢é=%1
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Figure 1: Effect of Viscosity on Temperature for Gas (M =rtd@an number)
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Figure 2: Effect of Viscosity on Temperature for liquid (MHartman number)
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Figure 3: Effect of Viscosity on Velocity for Gas (M = Hartmaumber)
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Figure 4: Effect of viscosity on Velocity for liquid (M = Haman number)
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Figure 5:Effect of thermal conductivity on Induced MagneticField for Gas (M = Hartman number)
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Figure 6:Effect ofthermal conductivity on Induced Magnetic Field lioquid (M = Hartman number)

11.0 Discussion and Conclusion

This study examines the effect of viscosity andria conductivity on magnetohydrodynamic two-phélee under
optically thick limit radiation. The domain of cadsration is an open-ended vertical channel, inctvtithe flow is taken
along the vertical axes and the velocity whicla iginction of y that is v(y) and the other axes taken as zero, thatis
(VxVy,V2) = (O, V(y), O).

This study considered the two states of matter ihatas and liquid. The radiation which is one loé fparameters
considered in this study for both gas and liqutéase the rate of heat transfer to the gas auid Jizvhich leads to increase
in temperature.

It can be seen clearly from Figures 1 and 2 thakimse in viscosity for gas and liquid, with constadiation parameter
gives increases in temperature.

Figures 3 and 4, the velocity of both gas and eiqocrease as the viscosity increases.

The induced magnetic field for gas and liquid imses when the radiation parameter is constantimétkase in thermal
conductivity. This can be seen from Figures 5 @nd
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