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Abstract

This paper investigates the dynamic behavior of beams most especially the Euler-
Bernoulli beam with structural damping coefficient subjected to Partially Distributed
Moving Loads. The governing Partial differential equation is solved using analytical-
numerical method. It was observed that as damping increases, the resultant solution
from transformed equation also increases keeping the fixed length of the beam
constant.

1.0 Introduction

The primary aim of this paper isto introduce relatively simple manner the subject of vibration asit applies to vibration of
beams traversed by uniformly distributed moving loads. The vibration of this moving load will be considered under trucks
and railways bridges. Then, the flexural motion of elastic structure will be analyzed.

Vibration of beams due to a moving loadsis a field of interest in mechanical, industrial and civil engineering, vibrations
of the kind occur in running, railways, bridges, beam subjected to pressure waves and piping systems subjected to two phases
flow. The moving loads may be roughly divided into three groups; moving oscillators, moving mass and moving forces[1- 4]

The vibrations of beams due to a moving arbitrary force was studied in [5] where the effects of beam damping, boundary
conditions and the speed of the moving load [5] were considered.

The liners and non-linear vibrations analysis of structural elements such as rods, beams, plates and shells, under the act
of travelling masses/forces is of considerable practical importance in Civil and mechanical engineering structured under
actual operating conditions.

11 Nature of Vibration

Vibration is mostly defined as oscillating motion. Beam is a piece of horizontal structure that is usually supported at both
ends. It can be in form of wood, metal or plastic, this is concerned with the theory describing the respond of elastic structure
under the influence of partialy distributed moving loads. The most obvious example of structure subjected to partially
distribute moving loads is railway bridges. Furthermore, there is a form of interaction between the motion of the bridge and
suspension of the vehicle. Some load applied statically especialy if the riding surface is uneven [6 - 8].

In general, there are two types of theory of flexural motion of elastic structure.

(i) the thick-structure theory which account for the effect of shear deformation and rotatory inertiawhile,

(i) the classical thin structures neglects the effects of shear information and rotatory inertial. This paper has therefore
been mativated by the above stated observation. An investigation into the dynamic response of a Bernoulli-beam resting on a
Winkler foundation subjected to partially distributed moving load is presented, the resulting coupled partial differential
equation is solved using finite difference method [9 - 13].

1.2 Damping and Undamping Vibration

Damping is the process by which vibration steadily diminishesin amplitude while the beam is non-prismatic.

Undamped vibration is the dynamic response of a simply supported Rayleigh beam caring partially distributed moving
loads. In this case only the rotatory inertial is taken into consideration. At the end, it was discovered that, as the value of r
(radius of gyration) increases, the amplitude of the deflection also increases.
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1.3 Moving Loads

Loads are generaly forces acting on a structure. When loads act on a structure, they produce stress and deformations.
Loads could be of constant or variable magnitudes. They could aso be static or dynamic. Dynamic loads are generally
functions of time which may or not continually change position. Dynamic loads which continually change their position are
called moving loads. Examplesinclude trucks, trains and cars.

Also, it is known that stresses under the moving loads are much greater than those under the same loads applied
statically, especialy if the riding surface is uneven.

Below are types of vibration of forces:

(i) Human induced forces: This comes under the heading of moving loads and important sources of dynamic excitation.

(i) Pedestrians walking or running across footbridges have been known to induce enough vibration to be alarming

(iii) Vibration of light floors caused by heel impact in normal usage can be disturbing to occupant of buildings.

1.4 Moving Load Problems

The problem of carrying out a dynamic of structures under moving loads is known as moving load problem, such
moving load problem are of practica importance. The most obvious examples of structure subjected to moving load is
highway and railways bridges.

There are two classes of moving loads problem, the first class consist of problem involving concentrated forces (masses)
moving with a specified velocity, while the other class deals with the problem of Vibration analysis of structure due to
Partially distributed moving forces (masses) [5,14 - 18].

15 Governing Equation
Consider a non-prismatic Euler-Bernoulli Beam of length L resting on Winkler foundation and traversed by uniform
partially distributed moving mass. The resulting vibrational behavior of this system is described by the following equation.

2
EWXXXX(X,'[) +/]_0Wt(><,t) +LWu (X’t)+th (X,t) :1{_ m, - md ZW{H (X— D+Ej— H(x— D—Ej}}
M, m m O dt 2 2

where (%, t) :%{— m, - mcéi—\zlv{H (D +%j -H (x— O +%jH
where w(x,t)= 3" X, (%), 1, (t

i=1

and

) =3 X, (094, ()

Over the condition, W(O,t) = W(]T,t) =W, (O,t)=WXX (7T,t)= 0.

2
EW (%) +/1_O\Nt(x't) +|\/|LW ()(,t)+V\/tt (X,t) :%[_ M, _md W{H (X— D+%j— H(X— D—%)H (3.0)

M, o m, dt?

Where W(x,t)=>" X, (x) y; (t)
i=1
/10 I's viscous Damping Co-efficient
K is Coefficient of Winkler foundation (force per length square).
M; ismassof the beam.
X istheaxia coordinate
tisTime
uisvelocity
E isModulus of Elasticity

Journal of the Nigerian Association of Mathematical Physics Volume 25 (November, 2013)65 — 76
66



Response Analysis of Euler-Bernoulli Beam Subjected To...M. A. Usman Jof NAMP

M is of the load
El isthe flexural rigidity of the beam

| is Moment of inertia
g is Acceleration due to gravity

W(X, t) isthe lateral deflection of the beam measured upward from its equilibrium position when unloaded.
The boundary and initial conditions for the problem are;

W(x,t) =W, (x,t)=0at x=00r x=e

W(x,t) =W, (x,t)=0at x=0or x=€

W, (x,t) =W, (x,t)=0at x=0or x=e

W, (x,t) =W, (x,t)=0at x=00r x=e

Furthermore, the total derivative Wy(x,t) which appears in equation (3.0) is defined as

W, (x,t) =W, (x,t) + 2V, (x,t)+ VAW, (x,t)

_ 4
Where V isthe constant velocity of the mass which is defined such that L=vt+ 2
2
EWXXXX(XJ) +/1_OVVI(X't)+LW (X1t)+VVtt(X,t)=1 _Mg _md \2N H (X—D+EJ_H(X_D_EJ (31a)
M, M, M, U dt 2 2

Establishing the differentialsin the governing equation
® 0
w (xt)=3 X, (x)y; (t)
i-1
o) 0
w, (x,t)=3 X () )
i-1
W (x,t)=3 X (x)y; (t)

o (3.1b)

w, ()= X (), (1)

i-1

W, (x1)=3 X" (), (1)

i-1

W, (x,t):; X (x)y, (t)
Substituting (3.1b) into equation (3.1a)

X0 04483 X, (7, ) e 3 X, 0 0+ 5 X0, 0 =000) = 5 v %, (0

Mi = i=1 i=1
-S| X 02 S ), 6 ) ) @2
L0y, 0+ X, W 0+ X 0 0+ X 0 =X x () (63

1 i
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Considering the (R.H.S) of the equation (3.3)
H(x,0)= H[X—D+%} - H[x— D+%

Putting
_|10,x<0

H(x) =
: : , , 1Lx>0
H(x) is the Heaviside unit function usually defined as

90w )+ 2 () v W
Note that:

,__[ Mg - MW, (x.t) + W, (x,t) + W, )JH (x 0) ="y (0)X, (x)

ii=1

i =%[— Mg - Zl X, (xy, (t) + 2v Zl X! (x)y; (t) +V2; X! (X)y, (t)ﬂH (x.0)
= Zly, (t)X; (x)
~MgH (x,0) - IVIH(XD){ 1(y,() () + 27y ()X (%) +V 2y )X, ())}

i :é ! i (3.4)
= 2 THX (X]

To normalize equation (3.4), multiply it by X, (X)
From eguation (3.4) we have,

0 ) 5 906 b 20, 000" 05 )] = S it ()

O i=1

(3.5
Taking the integral of both sides of equation (3.5) with respect to x long the length of the beam.

__MQIOL X, (x){H (x— D+%) H (x— D+Eﬂdx
_Mgzyj()_[ () |:H(X_D+%j H(X—D+Eﬂdx
R T

0o (36)
= Zyj (t)J'OL X, (X)X, (x)ax
Theintegral above yield
jOL X, (X){H (x— D+%j ~H (x— D+%ﬂdx: X, (0 )+';_: X! (0)+. (57)
J:)L X, (X)X, (x){H [x— D+%) -H (x— D+%ﬂdx: X, (O +|;—:r(xi OxiE)" +.. (3.8)
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IOL X, (x)Xll(x){H (x— D+%) -H (x— D+§ﬂdx: X, ([0 +§_;(xi Ox!@)" +... (3.9)
[, 6% (x)Hx- D+%j H (x- D+%ﬂdx:xj 0)x, (m)+§_;(x,. Ox'0O)"... (3.10)
> 5 0, X, 0%, (ax=; ) (311
év;git;t\;gi ng equation (3.7) to (3.11) into equation (3.6)

0 =-g X, 00+ 0 -m 57,003,000+ 5, x, 0 0

2,0 00,0010 -2 57,0 x, 001 0+ 5, x, (0 0

2 (X 0+ X! ) }-Mvz3, (0 O, 0+
E Ik, @+ 2x: 0+, 0]) (3.12)

Putting (3.12) into (3.3)

EL (i, 0+ 22,007, 0+-5 x, (6, 0+ X, 693, 0 -

6 - x, 00+ 51 0] |- 555, 0fx, 0, 0+ £, 0%, 0+
2X (O, @)+, O)x! (@} - 2|\/|vi:f/j (ix, Ox' 0)+E

2 O X} 0+ X Ox! O}-wv* £y, 0 O, O+

E iii ii [ ii
z[xj @ @), @)+ 2x @)+ X/ @)+ X; (D)]} (3.13)
Now we consider the free vibration of an Euler Bernoulli beam under consideration. Thus we have.
xiiv (X) - V(iv)i X; (X) =0 (3-14)
o MX?
Where y™; = =i J (3.15)
MX2X; (x)

Thus X (x) =™ X, (x)= 5 (3.16)

Further substituting (3.16) into (3.13) we have
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—y(t) ()+G—ix(>x(>+ﬁx()?():

X, (x){— |\/|g[xj (D)+% X' (D)J -M Z;(t){xi (DJXi © +'§_2 X' O)x, ([0)+

i 4
2x,;0)x, @)+ %, @) (D)}—ZMVZ;: ;O/j (t){X O)x; (D)+§—; X @) (©)+

2x" @)%, @), O X! @)X O} -mv2eS y, @(fx! O)x, @)+

2_E4[Xj O)x v (D)Xj @) +2x"[O)+ X/ [O)x i (D)]}
Divide through By X<( )

MV EPO+,0)+ 1, 0= mg) X, ()5 X (0]

M,

-M ;yj {Xi O)x, (D)+§—;(X TO)x, @) +2x,0x,0)+ X, )X (D))}

- 2Mvgf}j (t)X, {(D)Xii 0) +§_;(x ;Ox"@+2x!'O)x! O (D))
X/ Ox; OF-Mv Sy, 0 O, O+ 3 O%, )
r2x ()X 0+ X! (O 0) o

1.6 The Solution of the Coupled Linear Differential Equation with Prescribed Boundary Conditions
Solving the set of coupled second order differential equation of (3.17) will yield the values of Y, (t)S , We proceed

to the next step for solution.
The solve the coupled linear second order differential equation we consider a simply supported beam for which the

boundary conditions are given as:

w(o,t)=w' (o,t) = 0and w{A,t) = w' (7,t)= 0 (3.18)
For these condition. It is known that the normalized defection curves
X, (x) is defined by

X, (x )_\ESn(‘f"J j=12.....
X, (x )—\/:Sin(foj i=12..... (3.19)

In order to obtain a set of exact governing differential equation for simply supported beam we substitutive equation (3.19)
into (3.6) and obtained
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04
Zﬁﬂ_glz (t)[ sin J—jCos(il—nxj{H (x=2+8)-(H (x-2-5)dx
‘“L\/I—g/gy(t)j Sin ’—jc:os(il—mj{H (x=Z+2)~(H (x-Z-Z)}x
2V 5 (t)j:an(jl_’“jc:os ‘I_”Xj{H (x-2+2)~(H (x- - L
%.Z y0)f's n(jl—”"js' n[il—mjdx (321)

Evaluating the integralsin (3.21)

A=['sin # sn[?j{H (x-2+2)~(H (x— = ~%)}dx
B = [ 7% Jan| T (-2 5) - (b (- 2
= | 17 cos{ 1% i (x5 +5) (1 (-3 - S
D= (ol 7% gn(‘l_’“j{H (x=3+3)~(H (x-x -]
ol P

A=2S n(jl—nxjs n (?j (3.22a)
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1 nD nD . 1 nty,. D. .
-1 a0 g6 i) - 2 gn 26 - \an?( -
C—I+JSin | (i+j)gn . (i-i)- I_JSin I (i-j)sn ; (i-1i) (3.220)
D —mSinﬂl—D( j)Cos?D( - j)—ZSnll—T(M +gj(i + j)CosI—(i +) (3.22d)
Substituting (3.22a - 3.22d) into equation (3.21)
We obtained

R e (]

Sna( —I)Cos[nlmj( - J)+§—TTZ;J_ (tX:osl—(i + j)Sn(”?lmj(i +)

MZVJ()[\[JSnI—( j)S’n(ﬂ?lmj(i —|)+(i jj)(ﬂnﬂlm(i ¥ j)S’n(%Dj(i —|)J
(IS 2 8m= e eod 7))

+Cos(ﬂ|—Dj(i + j)S‘n( 2|Dj(l +§)i=12,3,...1#] (3.23)

By replacing the R.H.S of (3.17) with the R.H.S of (3.23) we finally obtained

My, (X + A ft) + M.y, (1)=— Mg MO faisin [J”Dj (”ITDJ
By o F(I—J)Sn[”ﬁj( 22510 coo 70+ )
an”_D(.ﬂ) Mg(){ﬂsnﬂl_ﬂ(.ﬂ)an”l_ﬂ(.ﬂ) h

2
om0, . om0, N MVZ(im 2( i
o= o= i (t). | =
Sn I (i+j)sin i (i+j)+ = (lijj() I((i+j)j
Snl—(l i 1)00s2—|D i+ ] Cos(— i+ j)JSn(l;D( j)Ji =1,2,3)i # | (3.24)
1.7 Numerical Solution
y'+ _y'—
y,(t) :% (3.25)
=2y +y.
j(t):y“l hyz,+y,_1 (3.26)

Substituting (3.25), (3.26) into equation (3.24)
iv1 Y- i+ _2 -+ L
Myj(t)sz+Ao(%j+KV(’[)+Ml[yll 4 y'lj:

h2
i =2y +y
Mg \/_Sn(|7-|[|]jsn(17.7-|jj_2mz(y]+l hl? V,-lj(i_lj)

M, jrd [ urmr
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[Cos”l—m( - J)SnTlm( - j)j+§n;z£1/;+1—2hl? +y,-_1j(i _1j)C°Sﬂ|D(i +])
Sin”?lmﬁ +j)- ZASV Z(y"+12hy"1](\/|7]8nﬂl—m(| + J)SHTID(I +j)+ (| 31)
(Sinnl—D(Hj)SinnTD(Hj)j MVZZ('”)Z [HJSHI—D( i+])

Cosn2_|D(| + j)+Cos|—D(| + j)Sinz—ID( +)i=123..i % j (3.27)

To solve this and re-arranging, we solve the (L.H.S) and (R.H.S) resp. then multiply (LHS) by h?.

Ah
:hZMijjz"'%(ym _yj—|)+h2Kyj +Miyj+| _2yj *tVia (3.28)
(M, +2/10jyi+l+(M —g/lojyj_l—(ZM ~h*mX? —h?ky, =

__ Mg =g [ulrmjs [jz_rmj_zmz[y,-ﬂ—Zyﬁyj_lj 1

M, jrr0] i ) On h? (i-j)

(Cosl—D( J)Sn”?:j( - j))+ér;;2(yj+l_2|::j +y,-_1J(i _1j)Cos7TID(i ‘i)

06, ) 2MY (Vi T Via \f S PRRNY  {u PR |
Sny (+1)-=5 Z( 2h j[ |]sn| A R )
2
(s Dan 2 )| 3 (S 2] L Jan )
C052—|D(| + J)+Cos|—D(| + j)Snz—ID(l +j)i=123..i# ]

From RHS of Equation (3.29), Multiply by h%

Mg o JfTDj [iﬂDj M & 1
M, jrO (l : 2| D]TZ(VJ+1 2y tyia) — y OS—(| )

i=1

Sn[”?lmja—j)}ﬁ—“fﬁ(m— v, +y._1)( S chos—(lﬂ)Sn—(lﬂ)

(3.29)

i=1

Y5y, - y,-l)(m«sm—(wJ)Sm—(w){ s

n—(| + )} + MV *h* ('ngyl\/IESnﬂl—DSn”_Do + J)+Sin(—(| + J)Sn(—o + j)jj

o

Sin(”l—(i + j)Sin[nl—(i + j)D (3.30)

Re-arrange equation (3.30) to get

WA (JTDJS”F;DHE%—ljJCO{UITDJQ”(UzTID}éTT[ijjj}
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Cosﬂl—D(I”fI)S'nﬂz—ID(I’fI)—wwqg —(|+J)5In—(|+1)+( fjj n"=(+ 1)

22+ Dy *IéIIII. fjj ~(i+)sn” =G - J)—4I\;IT(i jjjas”lD(i +)Sn72G+ 1)
Mvzhzﬂ( E]{ 1_gn”D(I +I)COS”D(I_I)(i+j)+Cos”D(I+I) .\
Ol i+ I 2l I

70, . -2m( 1\, 70, om0, . 2M( 1
Sn7(|+1)}yj+{ DﬂIi—jICOQI (i-])Sn i (i J)}+Dﬂ(

Sn”—D(i+j>+“MVIIF]Sn”—D(i )Sn—(n+1>+[ : jsn—(lﬂ)gn—(lﬂ)}y,_l
X 0 I I i+ ]

= (Ml +g/lojyj+1(Ml —gxlojyj_l -(2M —h’mX?; —=h’K)y, (3.31)
Equate equation (3.29) to (3.31)

h h Mh?g
[Ml 'I'EAojyjﬂ(Ml_E/Iojyj_l_(ZM _hzmxzj _hzk)yj = MI J]TD\/g
jrd . im0 2M (1
in——+<—
I 2 I 0A Il -

.jCosﬂlm(i +])

i+

Sn——

jae Ji-psn -y +2M [ 1_jCosﬂD(i+j)
2l Omr I

1+ ]

M ( 1.]ICos”D(i pSnZ=(i- ) -2 ( 1.jc:os”D(i +anT+ I)I+
Om\i-j I Omii—] I 2
mv-h’iA (\/gj{iSn—(l + j)COS—(I + j)+COS—(I + j)+8n—(| + J)}yJ
dl I )i+
{'ﬂzén(i fjJCos”ID(i - j)+8'n%(i —j)+_ﬂ2£1(i }jJCOSNID(i + j)S’n”TID(i £ i)+

hgwi\/?[Sn—(HJ)+8n2—(l+J)+(liJj( n—('+J)+3”—('+J)DVj—1 (3.32)

Collecting like terms

{M1+D/Io+2m( | IICOC (I—J)+Sin—(| J)I+§m[.I JCO° (I+J)+Sm—(l+1)

2 TO\ i — O\i+ ]
+?I %_[Sn—(nu))m G+ )+ S0 pen ey
h 2m( i ma,. . o, 2m( i
{M —I—/I0 + HD(I — JJCO (i- j)+8n7(l + j)}—ﬂm(i JJCO @i+ j)+8n—(| +])-
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i 20+ jyan G+ )+ (j.)(Sn”lD(iﬂ)Sn”TlD(i+j)jyj+1+

{2m+hzmxj2+hzk+4m(_i JCOC (I+j)8n—(l j)- 4m(i_ijj[COSﬂ|D(i+j)—9nﬂ7|D(i+j)}

TOli+ i

mveh?ir [2( i a0, . a0, . a0, . a0,
- — Sn i+ j)Cos—(i+j)+Cos—(i+ j)+Sn—(i + -+
L |(i+jJ | (i+1]) | (i+1]) | (i+1]) o (i+ D}y,
2
_ Mg g Sn(]nDan(ij =123 i#] (3.33)
MmO I 2
Conclusion

For the problem concerning the response of an Euler-Bernoulli beam resting on Winkler foundation to partialy
distributed load. It was observed that the fixed length of the load increase as the amplitude of the deflection increases. Also,
the time, t, increases with an increase in the amplitude of the deflection. It was observed that the amplitude of the deflection
increases as the value of r increases.

Wt 4.5 i
. =0.02, k=0.4

A

T—nn2 K-
4.0

25

2.0

15

0.5

Fig 4.2 Diagram shows deflection of beam for various values of yand k
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Wix.T) \
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S =0.0,k=0.0

*A

El
s —nam v

8

7

Fig 4.1 Diagram shows deflection of beam for various values af yand k
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