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Abstract

Validated methods when compared with standard nuicar methods for initial
value problems (IVPs) for ordinary differential egions (ODES) not only compute a
numerical solution to a problem, but also generaggiaranteed global error bounds
associated with the numerical solution. There haween significant developments in the
field of validated numerical methods for IVPs ovtite past few decades. However, none
of the validated methods develop to date are suédior stiff problems. This paper
investigated the potential of Neumaier's validatedethods for solving stiff IVPs for
ODES. Neumaier's result which is a special caseldhlquist’s [1] result shows from
our findings an effective validated method for $tiVPs for ODES, for problems where
there is no wrapping effect.

1.0 Introduction

Obviously, a good number of differential equatiames not have an analytical solution, but with #iuwent of digital
computers, complex equations or systems of equationld be solved with various numerical methoBsobably, the most
serious drawback of numerical methods is that tay only approximate the continuous solution witkedes of discrete
points. A large number of formations were devetbpe solve these kinds of equations. Implicit AdBashforth and
explicit Runge-Kutta methods are used fairly extegig nowadays.
Now consider the initial value problem (IVP) fordarary differential equation (ODE)

y,(t) = f(t'y (t))' }’(to) = Yo te (tO' T) (1)
Wherey € R" and f: R X R - R"
We denote the set of n-dimensional real intervaltars byR™assume thaf is smooth,(i.e. f is dif ferentiable) at all
points of the curve, and there exists a uniquetisosluo equation (1.1) o(ty, T). The purpose of this paper is to investigate
the potential of Neumaier’'s [2] enclosure methodtfee solution of the IVP (1.1) and to provide asight into how this
method behaves in practices.

2.0  Test Problems and Numerical Results
In this section, four 2-Dimensional initial valueoplems (IVP) are presented. The numerical residtained for these test
problems and the shortcomings that they revealiirimaplementation of Neumaier’s enclosure methaddiscussed.
2.1 Test Problems
Listed below are the four 2-dimensional test protdeeach of the form
y'(t) = A(t) + b(b), where te [0, T].
The global error tolerance s set to 107°, a representative value for this parameter
The initial condition for each test problem is
y1(0)1 [1]
y2 (0) 1
Problem 1
Linear ODE with constant coefficients and zero
b(t),te [0,100], u = Uy = —1 forall k
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y1 (0 -1 0 1@ 0
A N N | ]+[] (2.1)
v, () 0 1000{ Ly, () 0
The true solution iy, (t) = e~ ¢ and y,(t) = e~ 103t
Problem 2
Linear ODE with constant coefficients and constaomi-zerob(t), te [0,100], u, = U7 = —1 for all k:
O] - y1(t) 1
[yz' (t)] =1%o 100l by, @l * 1] (22)
The true solution iy, (t) = 1 and y,(t) = # + %e‘lw
Problem 3
Linear ODE with time dependent coefficients ard) te [0, 107], uy and
14
e(—10,—-10+ —) ~ [—10,0.1] for all k:
Hy ( 2 [ 1f
RO (10 eos@) (A0 (o) @3)
y; (£) lasin(t) =10 /\y, (t) t

Problem 4
Linear ODE with constam(t) and time dependeh(t) having a spike at=1,te [0,2],u, = U, = —1 for all k:
—2)2+ 0.000001% — 1

T (t L (t
B}j 8] [0 _1] ;] ((t))] + 1 ((t—1)2+ 0.000012) (2.4)
2 2 0
The true solution is
1010 1
yi () = + et

102¢t2 — 2 x 1019t + 10000000001 = 10000000001
Andy,(t) = et
2.2 numerical results and discussion
The number of significant digits of precision thM@PLE uses can be set using the command digitoutrimplementation,
we set digits td5. Given a user-specified global error boundve chose the largest step sigeat each time-stef, such
hat

Tl
Bretkhk 4 X (et — 1) <1 (2.5)
M
And

_,forl=0,..,10, are satisfied

The following are the graphs obtained for problemg, 3, and 4 using the above step size contralegly. The step sizes
taken for the problems are presented in tables2221and 2.3 respectively.
Note that at the last integration step, the step shosen can be smaller than if the function iset@valuated over the time
intervalt € [0, T] where T > T. thus by taking a smaller step size at the lasgmtion step results in a smaller error bound
at the last integration step.
We estimatex,= ||1Sz1Sk_1110k_1
WhereS,, is the eigenvector matrix associated with A.

et= IS " Skl (2.6)
For problems 1, 2 and 4, the matrix A is fixed withy = —1forallk this implies that
C = 1,since S, = s for all k and so S;'S,_, is the identity matrix. Hence the value &f, for integration time-step
(k > 1). This is true for any fixed matrix A, sinegis always equal td. Thus for problem withy, < 0 and with fixed
eigenvectors, the integration can always be coetinwhile keeping the global errgr .
For problem 4, the matriA,, is time dependent and this implies that the maigixmay change wittk. It was noted that
although the value ofg,_; at the end point integration time-stép— 1) may be below the prescribed error bound, the
initial value of@, at integration time-step may exceed the prescribed error bound. This sdoeicause the value 6fmay
exceedl on some steps, due $p changing from step to step. As a result, theevaliix, at integration step may exceed
the final value of@,_, at integration stegk —1). Thus, if the eigenvectors are changing from steptep, there is
possibility that the integration error will excett®® maximum tolerated error In other words, depending on the value pf
the initial value ofg, could exceed, even if the final value ab,_, in the previous integration time-step is belowThis
occurred in problem 4.
For problem 4, the following output was observed:
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e Atintegration time-stefg = 1
D rinar = 0.914080293343665 x 107°
e Atintegration time-stefg = 2
C = 1.46096064526068.
Brnitiar = 1.28496606987386 x 107,
Which is greater than the prescribed error bound

3.0  Conclusion

When the integration fails to continue using thepssize control strategy described previously, NgBgl] proposed an
alternate condition for the step size control idewrfor the integration to continue. This alteenadndition allows the global
error to exceed the prescribe tolerancdut by an amount such that the global error wawdd grow too fast. More
precisely, it allows the global error bound at émal of the integration stépto grow by at most times the damped initial

error at the end of integration stepwherel < x < 1§. that is, the integration can continue provideat th
o, et
——
Where( is a positive integer. i€ = 3, then the global error bound at the end of integrasitepk is at mostl% times the

damped initial error bound at integration skep
Table 1: Stepsize for each integration step fobjgm 1,

@ (hy) <71)or g—k(eﬁkhk -1)| < (2.7)
K

Integration step k | Initial Final timestept, | Stepsize taken at| Error e(t) =p() —
timesteak_l hk = tk—l y(t)
1 0 0.0125 0.0125 0.0000006
2 0.0125 0.06625 0.05375 0.0000005
3 0.06625 0.60375 0.5375 0.0000004
4 0.60375 5.00912 4.40537 0.0000001
5 5.00912 5.97875 0.96963 0.0000009
6 5.97875 20.66 14.68125 0.0000008
7 20.66 33.66 13.0000 0.0000002
8 33.66 100 66.3400 0.0000001
Table 2: Stepsize for each integration step for mblem 2
Integration step k | Initial Final timestept, | Stepsize taken at| Error e(t) =p() —
timesteak_l hk = tk—l y(t)
1 0 0.0125 0.0125 0.00000065
2 0.0125 0.004375 0.03125 0.00000012
3 0.004375 0.33212 0.28837 0.0000002
4 0.33212 0.35625 0.02413 0.0000001
5 0.35625 3.48125 3.125 0.0000001
6 3.48125 21.73125 18.2500 0.0000001
7 21.73125 34.73125 13.00125 0.0000001
8 34.73125 100 65.26875 0.0000001
Table 3:Stepsize for each integration step for ptadem 3
Integration stepk | Initial Final timestept, | Stepsize taken at| Error e(t) =p() —
timesteak_l hk = tk—l y(t)
1 0 0.0125 0.0125 0.0000007
2 0.0125 0.040625 0.028125 0.00000095
3 0.040625 0.321875 0.28125 0.0000008
4 0.321875 2.3046875 1.9828125 0.00000087
5 2.3046875 3.8909375 15.86245 0.0000008
6 3.8909375 7.9410575 4.05012 0.0000003
7 7.9410575 16.818875 8.8778175 0.0000002
8 16.818875 65.827838 49.008963 0.0000001
9 65.827838 76.2873875 10.459459 0.0000001
10 76.2873875 100 23.7126125 0.0000001
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P1Stepsize for err_max=1.0E-6 ERdr bound err max=1.0E6
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Figure 1. Problem 1: y, = fi, = —1,digits = 15, integration steps taken = 8
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Fig. 2: Problem 6:y;, = fi, = —1,digits = 15, integration steps taken = 6
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Figure 3: Problem 6: u, = 4, = —1,digits = 30, integration steps taken = 3
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