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                       Abstract 
 
Validated methods when compared with standard numerical methods for initial 

value problems (IVPs) for ordinary differential equations (ODES) not only compute a 
numerical solution to a problem, but also generate guaranteed global error bounds 
associated with the numerical solution.  There have been significant developments in the 
field of validated numerical methods for IVPs over the past few decades.  However, none 
of the validated methods develop to date are suitable for stiff problems.  This paper 
investigated the potential of Neumaier’s validated methods for solving stiff IVPs for 
ODES.  Neumaier’s result which is a special case of Dahlquist’s [1] result shows from 
our findings an effective validated method for stiff IVPs for ODES, for problems where 
there is no wrapping effect.  

 
 

1.0    Introduction 

Obviously, a good number of differential equations does not have an analytical solution, but with the advent of digital 
computers, complex equations or systems of equations could be solved with various numerical methods.  Probably, the most 
serious drawback of numerical methods is that they can only approximate the continuous solution with a series of discrete 
points.  A large number of formations were developed to solve these kinds of equations.  Implicit Adam-Bashforth and 
explicit Runge-Kutta methods are used fairly extensively nowadays. 
Now consider the initial value problem (IVP) for ordinary differential equation (ODE) ����� = 	���, �	����, ���
� = 	�
, ��	��
, ��																																																				�1� 
Where �		�	��	���	�:										�	 × 	�� 	→ 	�� 
We denote the set of n-dimensional real interval vectors by ��assume that � is smooth, ��. �. �	��	��������������� at all 
points of the curve, and there exists a unique solution to equation (1.1) on ��
, ��.  The purpose of this paper is to investigate 
the potential of Neumaier’s [2] enclosure method for the solution of the IVP (1.1) and to provide an insight into how this 
method behaves in practices. 
 
2.0 Test Problems and Numerical Results 
In this section, four 2-Dimensional initial value problems (IVP) are presented.  The numerical results obtained for these test 
problems and the shortcomings that they reveal in our implementation of Neumaier’s enclosure method are discussed. 
2.1 Test Problems 
Listed below are the four 2-dimensional test problems, each of the form  ����� = 	���� + 	����, �ℎ���	��	!0, �#. 
The global error tolerance		$	��	���	�%	10&', a representative value for this parameter 
The initial condition for each test problem is 

(�)�0��*	�0�+ 	= 				 ,11- 
Problem 1 
Linear ODE with constant coefficients and zero ����, ��	!0, 100#, ./ = 0/� = −1	�%�	���	2 
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3�)� 	����*� 	���4 = 		 ,−1 00 −1000- (�)	����*	���+ 	+	 ,00-																																																									�2.1� 
The true solution is �)��� = 	 �&6	���	�*��� = 	 �&)
76 
Problem 2 
Linear ODE with constant coefficients and constant non-zero ����, ��	!0,100#, ./ = 0/� = −1	�%�	���	2: 

3�)� 	����*� 	���4 = ,−1 00 −1000- (�)����*	���+ +	 ,11-																																																											�2.2� 
The true solution is �)��� = 	1	���	�*��� = 	 ))
8 +	 999)
8 �&)
76 
Problem 3 
Linear ODE with time dependent coefficients and ����		��	!0, 10:#, ./ 	��� ./		� ;−10,−10 +	 14√2> 	≈ 	 !−10, 0.1#	�%�	���	2: 

3�)� 	����*�	���4 = 	 ; −10 14@%����14������ −10 > ;�)����*	���> +	;�&7ABC	�6�� >																									�2.3� 
Problem 4 
Linear ODE with constant ����  and time dependent ���� having a spike at � = 1, ��	!0, 2#, ./ =	0E/ = −1	�%�	���	2: 

3�)� 	����*�	���4 = ,−1 00 −1- (�)����*	���+ + 	F�� − 2�* + 	0.000001* − 1��� − 1�* + 	0.00001*�0 G																�2.4� 
The true solution is 

�)��� = 	 10)
10*�* − 2 × 10)
� + 10000000001 +	 110000000001 �&6 
And �*��� = 	 �&6 
2.2 numerical results and discussion 
The number of significant digits of precision that MAPLE uses can be set using the command digits.  In our implementation, 
we set  digits to 15.  Given a user-specified global error bound $.  we chose the largest step size ℎ/ at each time-step, ℎ/ such 
hat  

∅/�JKLK + �/�./� ��JKLK − 	1� ≤ $																																																																			�2.5� 
And ℎ/&)20N 	≤ 10	ℎ/&), �%�	� = 0,… , 10, ���	��������� 

The following are the graphs obtained for problems 1, 2, 3, and 4 using the above step size control strategy.  The step sizes 
taken for the problems are presented in tables 2.1, 2.2 and 2.3 respectively. 
Note that at the last integration step, the step size chosen can be smaller than if the function is to be evaluated over the time 
interval �	�	!0, �#	�ℎ���	$	 > �. thus by taking a smaller step size at the last integration step results in a smaller error bound 
at the last integration step. 
We estimate ∝/=	‖S/&)S/&)‖∅/&) 
Where S/ 	��	�ℎ�	��T��U�@�%�	V����W	���%@�����	���ℎ	�/ . 
                                 letX = 	‖S/&)S/&)‖																																																																																																						�2.6� 
For problems 1, 2 and 4, the matrix A is fixed with ./ =	−1	�%�	���	2  this implies that X = 1, ���@�	S/ = �	�%�	���	2	���	�%	S/&)S/&) is the identity matrix.  Hence the value of ∝/ for integration time-step �2 > 1�.  This is true for any fixed matrix A, since X	is always equal to 1.  Thus for problem with ./ < 0 and with fixed 
eigenvectors, the integration can always be continued while keeping the global error ≤ 	$. 
For problem 4, the matrix �/ is time dependent and this implies that the matrix S/ may change with 2.  It was noted that 
although the value of  ∅/&) at the end point integration time-step �2 − 1� may be  below the prescribed error bound, the 
initial value of ∅/ at integration time-step 2 may exceed the prescribed error bound.  This occurs because the value of X may 
exceed 1 on some steps, due to S/ changing from step to step.  As a result, the value of ∝/ at integration step 2 may exceed 
the final value of ∅/&) at integration step �2 − 1�.  Thus, if the eigenvectors are changing from step to step, there is 
possibility that the integration error will exceed the maximum tolerated error $.  In other words, depending on the value of X, 
the initial value of ∅/ could exceed $, even if the final value of ∅/&) in the previous integration time-step is below $.  This 
occurred in problem 4. 
For problem 4, the following output was observed: 
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• At integration time-step 2 = 1 ∅[\�]N = 0.914080293343665	 × 10&' 
• At integration time-step 2 = 2 X = 1.46096064526068. ∅`�\6\]N = 1.28496606987386	 ×	10&', 

 Which is greater than the prescribed error bound 
 
3.0 Conclusion 
When the integration fails to continue using the step-size control strategy described previously, Neher [3,4] proposed an 
alternate condition for the step size control in order for the integration to continue.  This alternate condition allows the global 
error to exceed the prescribe tolerance $, but by an amount such that the global error would not grow too fast.  More 
precisely, it allows the global error bound at the end of the integration step 2 to grow by at most W times the damped initial 

error at the end of integration step 2, where 1 ≤ W ≤ 1 )7.  that is, the integration can continue provided that  

bb∅/�ℎ/� 	≤ $�	%�	 cde/0E/ f�gEKLK − 1hc < c∝/ �JKiLKX c4																								�2.7� 
Where X is a positive integer.  If X = 3,	then the global error bound at the end of integration step 2 is at most 1 )7 times the 

damped initial error bound at integration step 2. 
Table 1:  Stepsize for each integration step for problem 1, 
Integration step j Initial 

timestepkj&l 
Final timestepkj Stepsize taken at mj = kj&l 

Error n�k� = o�k� −p�k� 
1 
2 
3 
4 
5 
6 
7 
8 

0 
0.0125 
0.06625 
0.60375 
5.00912 
5.97875 
20.66 
33.66 

0.0125 
0.06625 
0.60375 
5.00912 
5.97875 
20.66 
33.66 
100 

0.0125 
0.05375 
0.5375 
4.40537 
0.96963 
14.68125 
13.0000 
66.3400 

0.0000006 
0.0000005 
0.0000004 
0.0000001 
0.0000009 
0.0000008 
0.0000002 
0.0000001 

 
Table 2:  Stepsize for each integration step for problem 2 
Integration step j Initial 

timestepkj&l 
Final timestepkj Stepsize taken at mj = kj&l 

Error n�k� = o�k� −p�k� 
1 
2 
3 
4 
5 
6 
7 
8 

0 
0.0125 
0.004375 
0.33212 
0.35625 
3.48125 
21.73125 
34.73125 

0.0125 
0.004375 
0.33212 
0.35625 
3.48125 
21.73125 
34.73125 
100 

0.0125 
0.03125 
0.28837 
0.02413 
3.125 
18.2500 
13.00125 
65.26875 

0.00000065 
0.00000012 
0.0000002 
0.0000001 
0.0000001 
0.0000001 
0.0000001 
0.0000001 

 
Table 3: Stepsize for each integration step for problem 3 
Integration step j Initial 

timestepkj&l 
Final timestepkj Stepsize taken at mj = kj&l 

Error n�k� = o�k� −p�k� 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

0 
0.0125 
0.040625 
0.321875 
2.3046875 
3.8909375 
7.9410575 
16.818875 
65.827838 
76.2873875 

0.0125 
0.040625 
0.321875 
2.3046875 
3.8909375 
7.9410575 
16.818875 
65.827838 
76.2873875 
100 

0.0125 
0.028125 
0.28125 
1.9828125 
15.86245 
4.05012 
8.8778175 
49.008963 
10.459459 
23.7126125 

0.0000007 
0.00000095 
0.0000008 
0.00000087 
0.0000008 
0.0000003 
0.0000002 
0.0000001 
0.0000001 
0.0000001 
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P1Stepsize for err_max=1.0E-6                   P1 Error bound err max=1.0E6 
 

 

 

 

 
(a) Stepsizevs Time                              (b)   Error bound vs Time 

Figure 1: Problem 1:   ./ =	 .̂/ =	−1, ��T��� = 15, ����T����%�	���r�	��2�� = 8 

P2Stepsize for err_max=1.0E-6                        P2 Error bound err max=1.0E6 
 

 

 

 

            (a) Stepsizevs Time                      (b) Error bound vs Time 
Fig. 2: Problem 6:  ./ =	 .̂/ =	−1, ��T��� = 15, ����T����%�	���r�	��2�� = 6 
 

 

 

 

     (a)   Stepsizevs Time                                        (b)  Error bound vs time 
Figure 3: Problem 6:     ./ =	 .̂/ =	−1, ��T��� = 30, ����T����%�	���r�	��2�� = 3 
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