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                       Abstract 

 
Method of finding the closed form solution of nonlinear partial differential 

equations using the Monge method is discussed. The method leads to finding one or 
two intermediate integrals from which a complete integral which is the solution of the 
given nonlinear partial differential equation is got by eliminating some arbitrary 
functions. The method is demonstrated by finding the closed form solution of some 
typical nonlinear partial differential equations. 
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1.0    Introduction 

A search through literature reveals that, it is difficult to obtain closed form solutions for a large class of nonlinear partial 
differential equations. Nevertheless most real life models result into nonlinear partial differential equations whose solutions 
are most desired in closed forms. Series of attempts have been made and are continuously being made by numerous authors 
to provide methods that could lead to solution of nonlinear partial differential equations in closed form. Unfortunately every 
presentation has its own limits in applications. 
In 1991 Rubel [1] suggested a method which can find a closed-form solution for some nonlinear partial differential equations 
by using a method he described as finding the quasi solutions. It has not been easy to advance this method since it involves, 
firstly considering an equation of higher order which may be easy to be solved and whose solution must reduce to the given 
equation on differentiation. Johnson and Swoller [2] presented a method that can only be applied to the hyperbolic equations 
in 1967. Erumaka [3] expounded the method of reduction into simple waves outlined by Fritz [4] in 1982. Again this method 
can only be applied to nonlinear partial differential equations of the form 
  f(x, t, u, ux, ut)uxx = utt , 
and not all nonlinear partial differential equations can be reduced to the above form. For some other methods, see [5 – 8]. 
 In application, most authors have resorted to using numerical methods with all its unavoidable constraints. Many 
such numerical schemes abound [9 – 12]. 
 In this paper we show how the method popularly referred to as the Monge method can be used to find the closed 
form solutions of a larger class of nonlinear partial differential equations. In section 2 the different steps involved in the said 
method is highlighted and the very crucial ones vividly explained. In section 3 we present the application of the Monge 
method to finding the closed form solutions for some typical nonlinear partial differential equations that often arise in science 
and engineering. The examples are nonetheless inexhaustive but serve to highlight the beauty in the application of the 
method. 
 
2.0 The Monge Method 
Given the general partial differential equation in two variables x and y (say) of the form 
  F(x, y, u, p, q, r, s, t) = 0,        (2.1) 
where p=ux, q=uy, r=uxx, s=uxy, t=uyy and 
  u = u(x, y)        (2.2) 
 
The method consists of establishing one or two intermediate integrals of the form  
  ζ = f (ξ),         (2.3) 
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where 
  ζ = ζ(x, y, u, p, q), 
 ξ = ξ(x, y, u, p, q), 
and f is an arbitrary function such that equation (2.1) can be derived from equation (2.3) when the arbitrary function is 
eliminated. In [13,14] it has been established that for equation (2.1) to possess a first integral of the form (2.3) it must be 
expressible in the form 
  Rr + Ss + Tt + U(rt – s2) = V,      (2.4) 
where  R, S, T, U and V are functions x, y, u, p and q. 
In this paper we consider the special case in which U = 0 so that equation (2.4) reduces to 
  Rr + Ss + Tt = V        (2.5) 
Now, by successively differentiating (2.2) we obtain the two relations 
  dp = rdx + sdy        (2.6) 
  dq = sdx + t dy        (2.7) 
From (2.6) and 92.7) we obtain 

  r = 
��	�		���

��
         (2.8) 

  t = 
��	�		���

��
        (2.9) 

Substituting (2.8) and (2.9) into (2.5) we obtain, on simplification, 
 R dpdy + T dqdx – V dxdy = s [R dy2 – S dxdy + T dx2]    (2.10) 
It has also been established in [13] that to realize the first intermediate integrals we must have from (2.10) the two conditions 
  R dpdy + T dq dx – V dx dy = 0      (2.11) 
and 
  R dy2 + T dx2 – S dxdy = 0      (2.12) 
Equations (2.11) and (2.12) are called Monge’s subsidiary equations. 
A careful inspection of equation (2.12) shows that it is, in principle, possible to find two functions m1 and m2 such that 
equation (2.12) can be expressed as a product of two factors 
  (dy – m1 dx)(dy – m2dx) = 0      (2.13) 
If m1 and m2 are distinct, we arrive at the conditions 
  dy – m1 dx = 0        (2.14) 
and 
  dy – m2 dx  = 0        (2.15) 
By using (2.14) and (2.15) in (2.11) in turn, together with  
  du = pdx + qdy         (2.16) 
we obtain the intermediate integrals of the form 
  u1 = f(v1) ,        (2.17) 
  u2 = f(v2) ,        (2.18) 
and between (2.17) and (2.18) we obtain p and q in terms of x, y, and u. Substituting these expressions for p and q into (2.16) 
and integrating, we obtain the required complete integral which gives the general solution of (2.1). 
The solution is a bit simplified if m1 = m2 in (2.14) and (2.15). In this case, substitution into (2.11) and using (2.16) results 
into one intermediate integral of the form 
  ap + bq = c        (2.19) 
Integrating (2.19) for u results to the required complete integral 
 
3.0 Illustrative Examples 
In this section we illustrate the use of the Monge method so far described to solve nonlinear partial differentials equations in 
the above category. 
Example 1. Solve the equation 
  q2r + (q – 2 pq) s + (p2 – p) t = 0.      (3.1) 
Compared with (2.5) we have 
  R = q2, S = q – 2 pq, T = p2 – p, V = 0     (3.2) 
Substituting (3.2) into (2.11) and (2.12) we obtain 
  q2 dpdy + (p2 – p)dq dx = 0      (3.3) 
  q2 dy2 – (q – 2pq) dx dy + (p2 – p) dx2 = 0     (3.4) 
It is easy to see that (3.4) can be written as a product of two factors in the form 
  (p dx + q dy) (pdx + qdy – dx) = 0      (3.5) 
Hence we have the two conditions 
  pdx + q dy = 0        (3.6) 
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and 
  pdx + qdy – dx = 0      (3.7) 
Using equations (3.6) and (3.7) in (3.3) we obtain the systems 

  




=+
=−+

0qdy dx  p

0dx )1(2 dqppdpdyq       (3.8) 

and 

  




=+
=−+

, 0dx-qdy dx  p

0dx )1(2 dqppdpdyq      (3.9) 

respectively. 
Solving (3.8) and (3.9) in turn we obtain the first intermediate integrals 
  p – q f(u) = 1       (3.10) 
and  p – q f(u – x) = 0       (3.11) 
respectively 
Eliminating p and q between (3.10) and (3.11) we obtain the relation 
  f(u – x) = f(u) du + dy      (3.12) 
Integrating (3.12) we obtain the general solution of (3.1) as 
  y + g(u) = h (u – x)      (3.13) 
Example 2. Solve the equation 
  (r – s)y + (s – t)x + q – p = 0.     (3.14) 
Compared with (2.5) we have 
  R = y ,  S = x – y,  T = -x,  V = p – q    (3.15) 
Substituting (3.15) into the Monge’s subsidiary equations we obtain 
  y dp dy = xdqdx – (p – q) dx dy) = 0    (3.16) 
  y dy2 – (x – y)dxdy – xdx2 = 0     (3.17) 
Equation (13.17) factors into 
  (ydy – xdx)(dy +dx) = 0,      (3.18) 
which implies that 
  ydy – x dx = 0       (3.19) 
  dy = - dy       (3.20) 
Noting that from (3.20) we have 
  y + x = c1       (3.21) 
and substituting (3.19) in (3.16), we obtain after simplification 
  d(yp) + d(x q) = 0      (3.22) 
Integrating (3.22) and using (3.21) we obtain the general solution of (3.14) as 
  u – F(v) = a2,       (3.23) 
where 
  v = x + x2 + a         (3.24) 
Example 3. Solve the equation 
  r  + (a + b)s + abt = xy      (3.25) 
Compared with (2.5) we have 
  R = 1, S = (a + b), T = ab, V = xy     (3.26) 
Substituting (3.26) into (2.11) and (2.12) we obtain 
  dp dy + abdqdx – xy dx dy = 0     (3.27) 
  dy2 – (a + b) dxdy + ab dx2 = 0     (3.28) 
Equation (3.28) factors into 
  (dy – bdx) (dy – adx) = 0      (3.29) 
Equation (3.29) and (3.27) lead to the systems 

  




=−
=+

0bdx dy 

0dydx xy -dx dq  abdydp      (3.30) 

and 

  




=−
=+

0adx dy 

0dydx xy -dx dq  abdydp     (3.31) 

From (3.30) we realize the first intermediate integral as  
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  p + aq = , )(
62 1

32

bxyf
bxyx −+−      (3.32) 

where f1 is arbitrary 
Again, from (3.31) we obtain the second intermediate integral as 

  p + bq =  )(
62 2

32

axyf
bxyx −+−     (3.33) 

where f2 is arbitrary. 
Eliminating p and q between equations (3.32) and (3.33) and integrating the result we obtain the complete integral of (3.25) 
as  

  u = 
�

	
 x3y – 

�


�
(a + b)x4 + ψ1(y – bx) + ψ2(y – ax),   (3.34) 

where ψ1 and ψ2 are arbitrary functions. 
 
4.0 Summary and Conclusion 
We have outlined the Monge method for solving the nonlinear partial differential equations of the form (2.5), explaining the 
different steps involved in getting a closed form solution for such equations. The examples presented in section 3 showed 
clearly how this method can readily be applied to determine the closed form solution of (2.5). Although, not all nonlinear 
partial differential equations are of the form (2.4) or (2.5) the work of [13] shows how a large class of nonlinear partial 
differential equations can be transformed into the form (2.4) and (2.5) given some established conditions. In this paper which 
serves as a first part on this discussion we have considered the general case, (2.4) in which U = 0 reducing it to (2.5). In the 
second part to be presented we shall present the method for the general case of (2.4) 
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